[1]
Lee, K.Y., and Mooney, D.J. "Hydrogels for Tissue Engineering." Chemical Reviews, vol. 101, no. 7, 2001, pp.1869-1879. https://pubs.acs.org/doi/.
DOI: 10.1021/cr000108x
Google Scholar
[2]
Ikada, Y. "Challenges in Tissue Engineering." Journal of the Royal Society Interface, vol. 3, no. 10, 2006, pp.589-601.
DOI: 10.1098/rsif.2006.0124
Google Scholar
[3]
Tan, H., and Marra, K.G. "Injectable, Biodegradable Hydrogels for Tissue Engineering Applications." Materials, vol. 3, no. 3, 2010, pp.1746-1767. https://doi.org/10.3390/ ma3031746.
DOI: 10.3390/ma3031746
Google Scholar
[4]
Drury, J.L., and Mooney, D.J. "Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications." Biomaterials, vol. 24, no. 24, 2003, pp.4337-4351. https://doi.org/10.1016/ S0142-9612(03)00340-5.
DOI: 10.1016/s0142-9612(03)00340-5
Google Scholar
[5]
Zhu, J. "Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering." Biomaterials, vol. 31, no. 17, 2010, pp.4639-56. https://doi.org/10.1016/ j.biomaterials.2010.02.044.
DOI: 10.1016/j.biomaterials.2010.02.044
Google Scholar
[6]
Radulescu, D.M., Neacsu, I. A., Grumezescu, A. M., and Andronescu, E. "New Insights of Scaffolds Based on Hydrogels in Tissue Engineering." Polymers, vol. 14, no. 4, 2022, p.799.
DOI: 10.3390/polym14040799
Google Scholar
[7]
Wang, M., Bai, J., Shao, K., Tang, W., Zhao, X., Lin, D., Huang, S., Chen, C., Ding Z. and Ye, J. "Poly (Vinyl Alcohol) Hydrogels: The Old and New Functional Materials". Advances in Polymer Technology, No.1, Nov. 2021.
DOI: 10.1155/2021/2225426
Google Scholar
[8]
Kumar, A., and Han, S.S. "PVA-Based Hydrogels for Tissue Engineering: A Review." International Journal of Polymeric Materials, vol. 66, no. 4, 2016, pp.159-182.
DOI: 10.1080/00914037.2016.1190930
Google Scholar
[9]
Liu, M., Zeng, X., Ma, C., Yi, H., Ali, Z., Mou, X., Li, S., Deng, Y. and He, N. "Injectable hydrogels for cartilage and bone tissue engineering." Bone Res, 5, 17014, 2017.
DOI: 10.1038/boneres.2017.14
Google Scholar
[10]
Tan, H., Gong, Y., Lao, L., Mao, Z., and Gao. C. "Gelatin/Chitosan/Hyaluronan Ternary Complex Scaffold Containing Basic Fibroblast Growth Factor for Cartilage Tissue Engineering." Journal of Materials Science: Materials in Medicine, vol. 18, no. 10, 2007, pp.1961-1968.
DOI: 10.1007/s10856-007-3095-5
Google Scholar
[11]
Huang, Y., Onyeri, S., Siewe, M., Moshfeghian, A., and Madihally, S.V. "In Vitro Characterization of Chitosan-Gelatin Scaffolds for Tissue Engineering." Biomaterials, vol. 26, no. 36, 2005, pp.7616-7627.
DOI: 10.1016/j.biomaterials.2005.05.036
Google Scholar
[12]
Yuan, Y., Chesnutt, B.M., Utturkar, G., Haggard, W. O., Yang, Y., Ong, J. L., and Bumgardner, J.D. "The Effect of Cross-Linking of Chitosan Microspheres with Genipin on Protein Release." Carbohydrate Polymers, vol. 68, no. 4, 2007, pp.561-567.
DOI: 10.1016/j.carbpol.2006.10.023
Google Scholar
[13]
Berger, J., Reist, M., Mayer, J.M., Felt, O., Peppas, N.A., and Gurny, R. "Structure and Interactions in Covalently and Ionically Crosslinked Chitosan Hydrogels for Biomedical Applications." European Journal of Pharmaceutics and Biopharmaceutics, vol. 57, no. 1, pp.19-34, 2004.
DOI: 10.1016/S0939-6411(03)00161-9
Google Scholar
[14]
Goa, K.L., and Benfield. P. "Hyaluronic Acid: A Review of Its Pharmacology and Use as a Surgical Aid in Ophthalmology, and Its Therapeutic Potential in Joint Disease and Wound Healing." Drugs, vol. 47, no. 3, 1994, pp.536-566.
DOI: 10.2165/00003495-199447030-00009
Google Scholar
[15]
Kuo, C.K., and Ma. P.X. "Ionically Crosslinked Alginate Hydrogels as Scaffolds for Tissue Engineering: Part 1. Structure, Gelation Rate, and Mechanical Properties." Biomaterials, vol. 22, no. 6, 2001, pp.511-521.
DOI: 10.1016/S0142-9612(00)00201-5
Google Scholar
[16]
Hiemstra, C., Zhong, Z., Li, L., Dijkstra, P.J., and Feijen, J. "In-Situ Formation of Biodegradable Hydrogels by Stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 Star Block Copolymers." Biomacromolecules, vol. 7, no. 10, 2006, pp.2790-2795.
DOI: 10.1021/bm060630e
Google Scholar
[17]
Hiemstra, C., Zhong, Z., Van Tomme, S.R., van Steenbergen, M.J., Jacobs, J.J.L., Den Otter, W., Hennink, W.E. and Feijen, J. "In Vitro and In Vivo Protein Delivery from In Situ Forming Poly(Ethylene Glycol)–Poly(Lactide) Hydrogels." Journal of Controlled Release, vol. 119, no. 3, 2007, pp.320-327.
DOI: 10.1016/j.jconrel.2007.03.014
Google Scholar
[18]
Nicodemus, G. D., Villanueva, I., and Bryant, S. J. "Mechanical Stimulation of TMJ Condylar Chondrocytes Encapsulated in PEG Hydrogels." Journal of Biomedical Materials Research Part A, vol. 83A, no. 2, 2007, pp.323-331.
DOI: 10.1002/jbm.a.31251
Google Scholar
[19]
Weber, L.M., Cheung, C.Y., and Anseth, K.S. "Multifunctional Pancreatic Islet Encapsulation Barriers Achieved via Multilayer PEG Hydrogels." Cell Transplantation, vol. 16, no. 10, 2008, pp.1049-1057.
DOI: 10.3727/000000007783472336
Google Scholar
[20]
Brown, C.D., Stayton, P.S., and Hoffman, A.S. "Semi-Interpenetrating Network of Poly(Ethylene Glycol) and Poly(D,L-Lactide) for the Controlled Delivery of Protein Drugs." Journal of Biomaterials Science, Polymer Edition, vol. 16, no. 2, 2005, pp.189-201.
DOI: 10.1163/1568562053115471
Google Scholar
[21]
Cascone, M. G., Laus, M., Ricci, D., and Sbarbati Del Guerra, R "Evaluation of Poly(Vinyl Alcohol) Hydrogels as a Component of Hybrid Artificial Tissues." Journal of Materials Science: Materials in Medicine, vol. 6, no. 2, 1995, pp.71-75.
DOI: 10.1007/BF00120410
Google Scholar
[22]
Garcia-Garcia, A., Muñana-González, S., Lanceros-Mendez, S., Ruiz-Rubio, L., Alvarez, L.P., and Vilas-Vilela, J.L. "Biodegradable Natural Hydrogels for Tissue Engineering, Controlled Release, and Soil Remediation." Polymers, vol. 16, no. 18, 2024, p.2599.
DOI: 10.3390/polym16182599
Google Scholar
[23]
Ansari, M., Darvishi, A. and Sabzevari, A. "A Review of Advanced Hydrogels for Cartilage Tissue Engineering." Frontiers in Bioengineering and Biotechnology, vol. 12, 2024.
DOI: 10.3389/fbioe.2024.1340893
Google Scholar
[24]
Chang, S., Wang, S., Liu, Z., and Wang, X. "Advances of Stimulus-Responsive Hydrogels for Bone Defects Repair in Tissue Engineering." Gels, vol. 8, no. 6, 2022, p.389.
DOI: 10.3390/gels8060389
Google Scholar
[25]
Qin, S., Zhu, J., Zhang, G., Sui, Q., Niu, Y., Ye, W., Ma, G. and Liu, H. "Research Progress of Functional Motifs Based on Growth Factors in Cartilage Tissue Engineering: A Review." Frontiers in Bioengineering and Biotechnology, vol. 11, 2023.
DOI: 10.3389/fbioe.2023.1127949
Google Scholar
[26]
Lei, L, Bai, Y., Qin, X., Liu, J., Huang, W., and Lv, Q. "Current Understanding of Hydrogel for Drug Release and Tissue Engineering." Gels, vol. 8, no. 5, p.301, 2022.
DOI: 10.3390/gels8050301
Google Scholar
[27]
Liu, Z., Xin, W., Ji, J., Xu, J., Zheng, L., Qu, X., and Yue, B. "3D-Printed Hydrogels in Orthopedics: Developments, Limitations, and Perspectives." Frontiers in Bioengineering and Biotechnology, vol. 10, 2022.
DOI: 10.3389/fbioe.2022.845342
Google Scholar
[28]
Mei, Q., Rao, J., Bei, H.P., Liu, Y., and Zhao, X. "3D Bioprinting Photo-Crosslinkable Hydrogels for Bone and Cartilage Repair." International journal of bioprinting, vol. 7, no.3, 367. 24 Jun. 2021.
DOI: 10.18063/ijb.v7i3.367
Google Scholar
[29]
Gough, J.E., Scotchford, C.A., and Downes, S. "Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis." Journal of biomedical materials research, vol. 61, no.1, pp.121-30, 2002.
DOI: 10.1002/jbm.10145
Google Scholar
[30]
Parhi, R. "Cross-Linked Hydrogel for Pharmaceutical Applications: A Review." Advanced pharmaceutical bulletin vol. 7, no.4, 2017, pp.515-530.
DOI: 10.15171/apb.2017.064
Google Scholar
[31]
Liu, P., Chen, W., Liu, C. Tian, M., and Liu, P. "A novel poly (vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming." Sci Rep, vol 9, no. 1, 9534, 2019.
DOI: 10.1038/s41598-019-46061-7
Google Scholar
[32]
Zhong, Y., Lin, Q., Yu, H., Shao, L., Cui, X., Pang, Q., Zhu, Y., and Hou, R. "Construction methods and biomedical applications of PVA-based hydrogels." Frontiers in chemistry, vol. 12 1376799. 15 Feb. 2024.
DOI: 10.3389/fchem.2024.1376799
Google Scholar