[1]
Gellini C, Feis A. Optothermal properties of plasmonic inorganic nanoparticles for photoacoustic applications. Photoacoustics 2021; 23: 100281.
DOI: 10.1016/j.pacs.2021.100281
Google Scholar
[2]
Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotechnol 2010;5:602–6.
DOI: 10.1038/nnano.2010.125
Google Scholar
[3]
Zhang Y, Chen S, Xiao Z, Liu X, Wu C, Wu K, et al. Magnetoelectric Nanoparticles Incorporated Biomimetic Matrix for Wireless Electrical Stimulation and Nerve Regeneration. Adv Healthc Mater 2021;10.
DOI: 10.1002/adhm.202100695
Google Scholar
[4]
Effects of Fe2+ Nanoparticles on Pain Responses and Neural Oscillation Following Chronic Neuropathic Pain in Rats. Arch Razi Inst 2023: 1852–60.
DOI: 10.32592/ARI.2023.78.6.1852
Google Scholar
[5]
Chen A, Kang Y, Liu J, Wu J, Feng X, Wang M, et al. Improvement of synaptic plasticity by nanoparticles and the related mechanisms: Applications and prospects. Journal of Controlled Release 2022;347:143–63.
DOI: 10.1016/j.jconrel.2022.04.049
Google Scholar
[6]
Kim DM, Nimigean CM. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating. Cold Spring Harb Perspect Biol 2016; 8: a029231.
DOI: 10.1101/cshperspect.a029231
Google Scholar
[7]
Enyedi P, Czirják G. Molecular Background of Leak K + Currents: Two-Pore Domain Potassium Channels. Physiol Rev 2010;90:559–605. https://doi.org/10.1152/physrev. 00029.2009.
DOI: 10.1152/physrev.00029.2009
Google Scholar
[8]
Pirahanchi Y, Jessu R, Aeddula NR. Physiology, Sodium Potassium Pump. 2025.
Google Scholar
[9]
Platkiewicz J, Brette R. Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration. PLoS Comput Biol 2011; 7: e1001129.
DOI: 10.1371/journal.pcbi.1001129
Google Scholar
[10]
Grider MH, Jessu R, Kabir R. Physiology, Action Potential. 2025.
Google Scholar
[11]
Peixoto HM, Cruz RMS, Moulin TC, Leão RN. Modeling the Effect of Temperature on Membrane Response of Light Stimulation in Optogenetically-Targeted Neurons. Front Comput Neurosci 2020; 14.
DOI: 10.3389/fncom.2020.00005
Google Scholar
[12]
Neumann W-J, Steiner LA, Milosevic L. Neurophysiological mechanisms of deep brain stimulation across spatiotemporal resolutions. Brain 2023; 146: 4456–68.
DOI: 10.1093/brain/awad239
Google Scholar
[13]
Jung J, Bungert A, Bowtell R, Jackson SR. Modulating Brain Networks With Transcranial Magnetic Stimulation Over the Primary Motor Cortex: A Concurrent TMS/fMRI Study. Front Hum Neurosci 2020; 14.
DOI: 10.3389/fnhum.2020.00031
Google Scholar
[14]
Xu S, Momin M, Ahmed S, Hossain A, Veeramuthu L, Pandiyan A, et al. Illuminating the Brain: Advances and Perspectives in Optoelectronics for Neural Activity Monitoring and Modulation. Advanced Materials 2023;35.
DOI: 10.1002/adma.202303267
Google Scholar
[15]
Zhi W, Li Y, Wang L, Hu X. Advancing Neuroscience and Therapy: Insights into Genetic and Non-Genetic Neuromodulation Approaches. Cells 2025; 14.
DOI: 10.3390/cells14020122
Google Scholar
[16]
Stoddart PR, Begeng JM, Tong W, Ibbotson MR, Kameneva T. Nanoparticle-based optical interfaces for retinal neuromodulation: a review. Front Cell Neurosci 2024;18.
DOI: 10.3389/fncel.2024.1360870
Google Scholar
[17]
Hammami I, Alabdallah NM, jomaa A Al, kamoun M. Gold nanoparticles: Synthesis properties and applications. J King Saud Univ Sci 2021;33:101560.
DOI: 10.1016/j.jksus.2021.101560
Google Scholar
[18]
Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 2016; 11: 673–92.
DOI: 10.2217/nnm.16.5
Google Scholar
[19]
Dong YC, Hajfathalian M, Maidment PSN, Hsu JC, Naha PC, Si-Mohamed S, et al. Effect of Gold Nanoparticle Size on Their Properties as Contrast Agents for Computed Tomography. Sci Rep 2019; 9: 14912.
DOI: 10.1038/s41598-019-50332-8
Google Scholar
[20]
Öztürk K, Kaplan M, Çalış S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int J Pharm 2024;666:124799.
DOI: 10.1016/j.ijpharm.2024.124799
Google Scholar
[21]
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016;17.
DOI: 10.3390/ijms17091534
Google Scholar
[22]
Bhana S, Lin G, Wang L, Starring H, Mishra SR, Liu G, et al. Near-Infrared-Absorbing Gold Nanopopcorns with Iron Oxide Cluster Core for Magnetically Amplified Photothermal and Photodynamic Cancer Therapy. ACS Appl Mater Interfaces 2015;7:11637–47.
DOI: 10.1021/acsami.5b02741
Google Scholar
[23]
Sela H, Cohen H, Elia P, Zach R, Karpas Z, Zeiri Y. Spontaneous penetration of gold nanoparticles through the blood brain barrier (BBB). J Nanobiotechnology 2015;13:71.
DOI: 10.1186/s12951-015-0133-1
Google Scholar
[24]
Guo Q, Xu S, Yang P, Wang P, Lu S, Sheng D, et al. A dual-ligand fusion peptide improves the brain-neuron targeting of nanocarriers in Alzheimer's disease mice. Journal of Controlled Release 2020; 320: 347–62.
DOI: 10.1016/j.jconrel.2020.01.039
Google Scholar
[25]
Yang P, Sheng D, Guo Q, Wang P, Xu S, Qian K, et al. Neuronal mitochondria-targeted micelles relieving oxidative stress for delayed progression of Alzheimer's disease. Biomaterials 2020; 238: 119844.
DOI: 10.1016/j.biomaterials.2020.119844
Google Scholar
[26]
Cheng X, Xie Q, Sun Y. Advances in nanomaterial-based targeted drug delivery systems. Front Bioeng Biotechnol 2023;11.
DOI: 10.3389/fbioe.2023.1177151
Google Scholar
[27]
Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci 2021;22:7202.
DOI: 10.3390/ijms22137202
Google Scholar
[28]
Li H, Zou Y, Jiang J. Synthesis of Ag@CuO nanohybrids and their photo-enhanced bactericidal effect through concerted Ag ion release and reactive oxygen species generation. Dalton Transactions 2020;49:9274–81.
DOI: 10.1039/D0DT01816C
Google Scholar
[29]
Zhang T, Wang L, Chen Q, Chen C. Cytotoxic Potential of Silver Nanoparticles. Yonsei Med J 2014;55:283.
DOI: 10.3349/ymj.2014.55.2.283
Google Scholar
[30]
Beck F, Loessl M, Baeumner AJ. Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care. Microchimica Acta 2023; 190: 91.
DOI: 10.1007/s00604-023-05666-6
Google Scholar
[31]
Abu Serea ES, Orue I, García JÁ, Lanceros-Méndez S, Reguera J. Enhancement and Tunability of Plasmonic-Magnetic Hyperthermia through Shape and Size Control of Au:Fe3O4 Janus Nanoparticles. ACS Appl Nano Mater 2023; 6: 18466–79.
DOI: 10.1021/acsanm.3c03818
Google Scholar
[32]
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, et al. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023; 123: 6891–952.
DOI: 10.1021/acs.chemrev.3c00159
Google Scholar
[33]
Dheyab MA, Aziz AA, Moradi Khaniabadi P, Jameel MS, Oladzadabbasabadi N, Mohammed SA, et al. Monodisperse Gold Nanoparticles: A Review on Synthesis and Their Application in Modern Medicine. Int J Mol Sci 2022;23:7400.
DOI: 10.3390/ijms23137400
Google Scholar
[34]
Wang H, Siemens J. TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature 2015;2:178–87.
DOI: 10.1080/23328940.2015.1040604
Google Scholar
[35]
Carvalho-de-Souza JL, Pinto BI, Pepperberg DR, Bezanilla F. Optocapacitive Generation of Action Potentials by Microsecond Laser Pulses of Nanojoule Energy. Biophys J 2018;114:283–8.
DOI: 10.1016/j.bpj.2017.11.018
Google Scholar
[36]
GIUSTINI AJ, PETRYK AA, CASSIM SM, TATE JA, BAKER I, HOOPES PJ. MAGNETIC NANOPARTICLE HYPERTHERMIA IN CANCER TREATMENT. Nano Life 2010;01:17–32.
DOI: 10.1142/S1793984410000067
Google Scholar
[37]
Chang D, Lim M, Goos JACM, Qiao R, Ng YY, Mansfeld FM, et al. Biologically Targeted Magnetic Hyperthermia: Potential and Limitations. Front Pharmacol 2018;9.
DOI: 10.3389/fphar.2018.00831
Google Scholar
[38]
Latypova AA, Yaremenko A V., Pechnikova NA, Minin AS, Zubarev I V. Magnetogenetics as a promising tool for controlling cellular signaling pathways. J Nanobiotechnology 2024;22:327.
DOI: 10.1186/s12951-024-02616-z
Google Scholar
[39]
Rubio Ayala M, Syrovets T, Hafner S, Zablotskii V, Dejneka A, Simmet T. Spatiotemporal magnetic fields enhance cytosolic Ca 2+ levels and induce actin polymerization via activation of voltage-gated sodium channels in skeletal muscle cells. Biomaterials 2018;163:174–84.
DOI: 10.1016/j.biomaterials.2018.02.031
Google Scholar
[40]
Boles MA, Engel M, Talapin D V. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016; 116: 11220–89.
DOI: 10.1021/acs.chemrev.6b00196
Google Scholar
[41]
Wang Y, Lin J, Zhu K, Nie Y, Wang M, Ma X, et al. Precision neuroregulation combining liquid metal and magnetic stimulation. J Neuroeng Rehabil 2025;22:76.
DOI: 10.1186/s12984-025-01575-2
Google Scholar
[42]
Young AT, Cornwell N, Daniele MA. Neuro‐Nano Interfaces: Utilizing Nano‐Coatings and Nanoparticles to Enable Next‐Generation Electrophysiological Recording, Neural Stimulation, and Biochemical Modulation. Adv Funct Mater 2018; 28.
DOI: 10.1002/adfm.201700239
Google Scholar
[43]
Nakamura H, Sezawa K, Hata M, Ohsaki S, Watano S. Direct translocation of nanoparticles across a model cell membrane by nanoparticle-induced local enhancement of membrane potential. Physical Chemistry Chemical Physics 2019; 21: 18830–8.
DOI: 10.1039/C9CP02935D
Google Scholar
[44]
Kricheldorff J, Göke K, Kiebs M, Kasten FH, Herrmann CS, Witt K, et al. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Sci 2022;12:929.
DOI: 10.3390/brainsci12070929
Google Scholar
[45]
Chacron MJ, Fortune ES. Subthreshold Membrane Conductances Enhance Directional Selectivity in Vertebrate Sensory Neurons. J Neurophysiol 2010;104:449–62.
DOI: 10.1152/jn.01113.2009
Google Scholar
[46]
Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci 2016;17:1534.
DOI: 10.3390/ijms17091534
Google Scholar
[47]
Bliss TVP, Cooke SF. Long-term potentiation and long-term depression: a clinical perspective. Clinics 2011;66:3–17.
DOI: 10.1590/S1807-59322011001300002
Google Scholar
[48]
Cunningham B, Engstrom AM, Harper BJ, Harper SL, Mackiewicz MR. Silver Nanoparticles Stable to Oxidation and Silver Ion Release Show Size-Dependent Toxicity In Vivo. Nanomaterials 2021;11:1516.
DOI: 10.3390/nano11061516
Google Scholar
[49]
Sun C, Yin N, Wen R, Liu W, Jia Y, Hu L, et al. Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions. Neurotoxicology 2016;52:210–21.
DOI: 10.1016/j.neuro.2015.09.007
Google Scholar
[50]
Guo F, Nie X, Hong J, Zhang Y, Sun J, Zhang Y. Influence of Joule heating during single-cell electroporation simulation under IRE and H-FIRE pulses. Mater Today Commun 2023;36:106853.
DOI: 10.1016/j.mtcomm.2023.106853
Google Scholar
[51]
Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP Channels, 2015, p.73–118.
DOI: 10.1016/bs.pmbts.2015.01.002
Google Scholar
[52]
Guo B, Zhang M, Hao W, Wang Y, Zhang T, Liu C. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl Psychiatry 2023;13:5.
DOI: 10.1038/s41398-022-02297-y
Google Scholar