Modulating Neurons via Optothermal, Magnetic, and Electrical Mechanisms Using Metal Nanoparticles

soon available
Article Preview

Abstract:

The nervous system plays a vital role in maintaining overall health. Recent nanotechnology advances enable precise control of neuronal activity using metal nanoparticles, which convert external stimuli into electrical, mechanical, or thermal signals to modulate excitability. This review explores three primary neuromodulation strategies (e.g., electrical, magnetic, and optothermal stimulation) where magnetic methods create magnetothermal and magnetomechanical effects, optothermal techniques use surface plasmon resonance to activate heat-sensitive ion channels, and electrical approaches alter membrane potential via the high conductivity of nanoparticles. These methods hold significant potential for treating neurological disorders such as chronic pain, epilepsy, and Parkinson’s disease, though challenges like biocompatibility, metal ion toxicity, and efficient nanoparticle clearance must be addressed. To overcome these barriers, ongoing research focuses on coating nanoparticles with protective layers, modifying their surfaces to improve safety, and designing them in ways that help the body clear them more easily. Incorporating targeted delivery systems, biodegradable materials, and stimuli-responsive coatings into nanoparticle design could further improve safety, enhance personalization, and enable precise, reversible control of brain circuits, opening new avenues for treating neurological conditions.

Info:

Pages:

81-91

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Gellini C, Feis A. Optothermal properties of plasmonic inorganic nanoparticles for photoacoustic applications. Photoacoustics 2021; 23: 100281.

DOI: 10.1016/j.pacs.2021.100281

Google Scholar

[2] Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nanotechnol 2010;5:602–6.

DOI: 10.1038/nnano.2010.125

Google Scholar

[3] Zhang Y, Chen S, Xiao Z, Liu X, Wu C, Wu K, et al. Magnetoelectric Nanoparticles Incorporated Biomimetic Matrix for Wireless Electrical Stimulation and Nerve Regeneration. Adv Healthc Mater 2021;10.

DOI: 10.1002/adhm.202100695

Google Scholar

[4] Effects of Fe2+ Nanoparticles on Pain Responses and Neural Oscillation Following Chronic Neuropathic Pain in Rats. Arch Razi Inst 2023: 1852–60.

DOI: 10.32592/ARI.2023.78.6.1852

Google Scholar

[5] Chen A, Kang Y, Liu J, Wu J, Feng X, Wang M, et al. Improvement of synaptic plasticity by nanoparticles and the related mechanisms: Applications and prospects. Journal of Controlled Release 2022;347:143–63.

DOI: 10.1016/j.jconrel.2022.04.049

Google Scholar

[6] Kim DM, Nimigean CM. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating. Cold Spring Harb Perspect Biol 2016; 8: a029231.

DOI: 10.1101/cshperspect.a029231

Google Scholar

[7] Enyedi P, Czirják G. Molecular Background of Leak K + Currents: Two-Pore Domain Potassium Channels. Physiol Rev 2010;90:559–605. https://doi.org/10.1152/physrev. 00029.2009.

DOI: 10.1152/physrev.00029.2009

Google Scholar

[8] Pirahanchi Y, Jessu R, Aeddula NR. Physiology, Sodium Potassium Pump. 2025.

Google Scholar

[9] Platkiewicz J, Brette R. Impact of fast sodium channel inactivation on spike threshold dynamics and synaptic integration. PLoS Comput Biol 2011; 7: e1001129.

DOI: 10.1371/journal.pcbi.1001129

Google Scholar

[10] Grider MH, Jessu R, Kabir R. Physiology, Action Potential. 2025.

Google Scholar

[11] Peixoto HM, Cruz RMS, Moulin TC, Leão RN. Modeling the Effect of Temperature on Membrane Response of Light Stimulation in Optogenetically-Targeted Neurons. Front Comput Neurosci 2020; 14.

DOI: 10.3389/fncom.2020.00005

Google Scholar

[12] Neumann W-J, Steiner LA, Milosevic L. Neurophysiological mechanisms of deep brain stimulation across spatiotemporal resolutions. Brain 2023; 146: 4456–68.

DOI: 10.1093/brain/awad239

Google Scholar

[13] Jung J, Bungert A, Bowtell R, Jackson SR. Modulating Brain Networks With Transcranial Magnetic Stimulation Over the Primary Motor Cortex: A Concurrent TMS/fMRI Study. Front Hum Neurosci 2020; 14.

DOI: 10.3389/fnhum.2020.00031

Google Scholar

[14] Xu S, Momin M, Ahmed S, Hossain A, Veeramuthu L, Pandiyan A, et al. Illuminating the Brain: Advances and Perspectives in Optoelectronics for Neural Activity Monitoring and Modulation. Advanced Materials 2023;35.

DOI: 10.1002/adma.202303267

Google Scholar

[15] Zhi W, Li Y, Wang L, Hu X. Advancing Neuroscience and Therapy: Insights into Genetic and Non-Genetic Neuromodulation Approaches. Cells 2025; 14.

DOI: 10.3390/cells14020122

Google Scholar

[16] Stoddart PR, Begeng JM, Tong W, Ibbotson MR, Kameneva T. Nanoparticle-based optical interfaces for retinal neuromodulation: a review. Front Cell Neurosci 2024;18.

DOI: 10.3389/fncel.2024.1360870

Google Scholar

[17] Hammami I, Alabdallah NM, jomaa A Al, kamoun M. Gold nanoparticles: Synthesis properties and applications. J King Saud Univ Sci 2021;33:101560.

DOI: 10.1016/j.jksus.2021.101560

Google Scholar

[18] Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 2016; 11: 673–92.

DOI: 10.2217/nnm.16.5

Google Scholar

[19] Dong YC, Hajfathalian M, Maidment PSN, Hsu JC, Naha PC, Si-Mohamed S, et al. Effect of Gold Nanoparticle Size on Their Properties as Contrast Agents for Computed Tomography. Sci Rep 2019; 9: 14912.

DOI: 10.1038/s41598-019-50332-8

Google Scholar

[20] Öztürk K, Kaplan M, Çalış S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int J Pharm 2024;666:124799.

DOI: 10.1016/j.ijpharm.2024.124799

Google Scholar

[21] Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016;17.

DOI: 10.3390/ijms17091534

Google Scholar

[22] Bhana S, Lin G, Wang L, Starring H, Mishra SR, Liu G, et al. Near-Infrared-Absorbing Gold Nanopopcorns with Iron Oxide Cluster Core for Magnetically Amplified Photothermal and Photodynamic Cancer Therapy. ACS Appl Mater Interfaces 2015;7:11637–47.

DOI: 10.1021/acsami.5b02741

Google Scholar

[23] Sela H, Cohen H, Elia P, Zach R, Karpas Z, Zeiri Y. Spontaneous penetration of gold nanoparticles through the blood brain barrier (BBB). J Nanobiotechnology 2015;13:71.

DOI: 10.1186/s12951-015-0133-1

Google Scholar

[24] Guo Q, Xu S, Yang P, Wang P, Lu S, Sheng D, et al. A dual-ligand fusion peptide improves the brain-neuron targeting of nanocarriers in Alzheimer's disease mice. Journal of Controlled Release 2020; 320: 347–62.

DOI: 10.1016/j.jconrel.2020.01.039

Google Scholar

[25] Yang P, Sheng D, Guo Q, Wang P, Xu S, Qian K, et al. Neuronal mitochondria-targeted micelles relieving oxidative stress for delayed progression of Alzheimer's disease. Biomaterials 2020; 238: 119844.

DOI: 10.1016/j.biomaterials.2020.119844

Google Scholar

[26] Cheng X, Xie Q, Sun Y. Advances in nanomaterial-based targeted drug delivery systems. Front Bioeng Biotechnol 2023;11.

DOI: 10.3389/fbioe.2023.1177151

Google Scholar

[27] Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci 2021;22:7202.

DOI: 10.3390/ijms22137202

Google Scholar

[28] Li H, Zou Y, Jiang J. Synthesis of Ag@CuO nanohybrids and their photo-enhanced bactericidal effect through concerted Ag ion release and reactive oxygen species generation. Dalton Transactions 2020;49:9274–81.

DOI: 10.1039/D0DT01816C

Google Scholar

[29] Zhang T, Wang L, Chen Q, Chen C. Cytotoxic Potential of Silver Nanoparticles. Yonsei Med J 2014;55:283.

DOI: 10.3349/ymj.2014.55.2.283

Google Scholar

[30] Beck F, Loessl M, Baeumner AJ. Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care. Microchimica Acta 2023; 190: 91.

DOI: 10.1007/s00604-023-05666-6

Google Scholar

[31] Abu Serea ES, Orue I, García JÁ, Lanceros-Méndez S, Reguera J. Enhancement and Tunability of Plasmonic-Magnetic Hyperthermia through Shape and Size Control of Au:Fe3O4 Janus Nanoparticles. ACS Appl Nano Mater 2023; 6: 18466–79.

DOI: 10.1021/acsanm.3c03818

Google Scholar

[32] Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, et al. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023; 123: 6891–952.

DOI: 10.1021/acs.chemrev.3c00159

Google Scholar

[33] Dheyab MA, Aziz AA, Moradi Khaniabadi P, Jameel MS, Oladzadabbasabadi N, Mohammed SA, et al. Monodisperse Gold Nanoparticles: A Review on Synthesis and Their Application in Modern Medicine. Int J Mol Sci 2022;23:7400.

DOI: 10.3390/ijms23137400

Google Scholar

[34] Wang H, Siemens J. TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature 2015;2:178–87.

DOI: 10.1080/23328940.2015.1040604

Google Scholar

[35] Carvalho-de-Souza JL, Pinto BI, Pepperberg DR, Bezanilla F. Optocapacitive Generation of Action Potentials by Microsecond Laser Pulses of Nanojoule Energy. Biophys J 2018;114:283–8.

DOI: 10.1016/j.bpj.2017.11.018

Google Scholar

[36] GIUSTINI AJ, PETRYK AA, CASSIM SM, TATE JA, BAKER I, HOOPES PJ. MAGNETIC NANOPARTICLE HYPERTHERMIA IN CANCER TREATMENT. Nano Life 2010;01:17–32.

DOI: 10.1142/S1793984410000067

Google Scholar

[37] Chang D, Lim M, Goos JACM, Qiao R, Ng YY, Mansfeld FM, et al. Biologically Targeted Magnetic Hyperthermia: Potential and Limitations. Front Pharmacol 2018;9.

DOI: 10.3389/fphar.2018.00831

Google Scholar

[38] Latypova AA, Yaremenko A V., Pechnikova NA, Minin AS, Zubarev I V. Magnetogenetics as a promising tool for controlling cellular signaling pathways. J Nanobiotechnology 2024;22:327.

DOI: 10.1186/s12951-024-02616-z

Google Scholar

[39] Rubio Ayala M, Syrovets T, Hafner S, Zablotskii V, Dejneka A, Simmet T. Spatiotemporal magnetic fields enhance cytosolic Ca 2+ levels and induce actin polymerization via activation of voltage-gated sodium channels in skeletal muscle cells. Biomaterials 2018;163:174–84.

DOI: 10.1016/j.biomaterials.2018.02.031

Google Scholar

[40] Boles MA, Engel M, Talapin D V. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016; 116: 11220–89.

DOI: 10.1021/acs.chemrev.6b00196

Google Scholar

[41] Wang Y, Lin J, Zhu K, Nie Y, Wang M, Ma X, et al. Precision neuroregulation combining liquid metal and magnetic stimulation. J Neuroeng Rehabil 2025;22:76.

DOI: 10.1186/s12984-025-01575-2

Google Scholar

[42] Young AT, Cornwell N, Daniele MA. Neuro‐Nano Interfaces: Utilizing Nano‐Coatings and Nanoparticles to Enable Next‐Generation Electrophysiological Recording, Neural Stimulation, and Biochemical Modulation. Adv Funct Mater 2018; 28.

DOI: 10.1002/adfm.201700239

Google Scholar

[43] Nakamura H, Sezawa K, Hata M, Ohsaki S, Watano S. Direct translocation of nanoparticles across a model cell membrane by nanoparticle-induced local enhancement of membrane potential. Physical Chemistry Chemical Physics 2019; 21: 18830–8.

DOI: 10.1039/C9CP02935D

Google Scholar

[44] Kricheldorff J, Göke K, Kiebs M, Kasten FH, Herrmann CS, Witt K, et al. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Sci 2022;12:929.

DOI: 10.3390/brainsci12070929

Google Scholar

[45] Chacron MJ, Fortune ES. Subthreshold Membrane Conductances Enhance Directional Selectivity in Vertebrate Sensory Neurons. J Neurophysiol 2010;104:449–62.

DOI: 10.1152/jn.01113.2009

Google Scholar

[46] Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int J Mol Sci 2016;17:1534.

DOI: 10.3390/ijms17091534

Google Scholar

[47] Bliss TVP, Cooke SF. Long-term potentiation and long-term depression: a clinical perspective. Clinics 2011;66:3–17.

DOI: 10.1590/S1807-59322011001300002

Google Scholar

[48] Cunningham B, Engstrom AM, Harper BJ, Harper SL, Mackiewicz MR. Silver Nanoparticles Stable to Oxidation and Silver Ion Release Show Size-Dependent Toxicity In Vivo. Nanomaterials 2021;11:1516.

DOI: 10.3390/nano11061516

Google Scholar

[49] Sun C, Yin N, Wen R, Liu W, Jia Y, Hu L, et al. Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions. Neurotoxicology 2016;52:210–21.

DOI: 10.1016/j.neuro.2015.09.007

Google Scholar

[50] Guo F, Nie X, Hong J, Zhang Y, Sun J, Zhang Y. Influence of Joule heating during single-cell electroporation simulation under IRE and H-FIRE pulses. Mater Today Commun 2023;36:106853.

DOI: 10.1016/j.mtcomm.2023.106853

Google Scholar

[51] Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP Channels, 2015, p.73–118.

DOI: 10.1016/bs.pmbts.2015.01.002

Google Scholar

[52] Guo B, Zhang M, Hao W, Wang Y, Zhang T, Liu C. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl Psychiatry 2023;13:5.

DOI: 10.1038/s41398-022-02297-y

Google Scholar