[1]
Ray, J.J.; Friedmann, A.J.; Hanselman, A.E.; Vaida, J.; Dayton, P.D.; Hatch, D.J.; Smith, B.; Santrock, R.D. Hallux valgus. Foot & ankle orthopaedics 2019, 4, 2473011419838500.
DOI: 10.1177/2473011419838500
Google Scholar
[2]
Robinson, A.; Limbers, J. Modern concepts in the treatment of hallux valgus. The Journal of Bone & Joint Surgery British Volume 2005, 87, 1038-1045.
DOI: 10.1302/0301-620x.87b8.16467
Google Scholar
[3]
Nix, S.; Smith, M.; Vicenzino, B. Prevalence of hallux valgus in the general population: a systematic review and meta-analysis. Journal of Foot and Ankle Research 2010, 3, 21.
DOI: 10.1186/1757-1146-3-21
Google Scholar
[4]
Wülker, N.; Mittag, F. The treatment of hallux valgus. Deutsches Ärzteblatt International 2012, 109, 857.
DOI: 10.3238/arztebl.2012.0857
Google Scholar
[5]
Xu, D.; Zhou, H.; Quan, W.; Ma, X.; Chon, T.-E.; Fernandez, J.; Gusztav, F.; Kovács, A.; Baker, J.S.; Gu, Y. New insights optimize landing strategies to reduce lower limb injury risk. Cyborg and Bionic Systems 2024, 5, 0126.
DOI: 10.34133/cbsystems.0126
Google Scholar
[6]
Glasoe, W.M.; Nuckley, D.J.; Ludewig, P.M. Hallux valgus and the first metatarsal arch segment: a theoretical biomechanical perspective. Physical therapy 2010, 90, 110-120.
DOI: 10.2522/ptj.20080298
Google Scholar
[7]
Xu, D.; Zhou, H.; Quan, W.; Jiang, X.; Liang, M.; Li, S.; Ugbolue, U.C.; Baker, J.S.; Gusztav, F.; Ma, X. A new method proposed for realizing human gait pattern recognition: Inspirations for the application of sports and clinical gait analysis. Gait & Posture 2024, 107, 293-305.
DOI: 10.1016/j.gaitpost.2023.10.019
Google Scholar
[8]
Hutton, W.; Dhanendran, M. The mechanics of normal and hallux valgus feet—a quantitative study. Clinical Orthopaedics and Related Research® 1981, 157, 7-13.
DOI: 10.1097/00003086-198106000-00004
Google Scholar
[9]
Teng, P.S.P.; Kong, P.W.; Leong, K.F. Effects of foot rotation positions on knee valgus during single-leg drop landing: Implications for ACL injury risk reduction. The knee 2017, 24, 547-554.
DOI: 10.1016/j.knee.2017.01.014
Google Scholar
[10]
Qu, X.; Xu, D.; Yang, X.; Ugbolue, U.C.; Zhou, H.; Gu, Y. Exploring the Relationship Between Foot Position and Reduced Risk of Knee-Related Injuries in Side-Cutting Movements. Applied Sciences 2024, 14, 11295.
DOI: 10.3390/app142311295
Google Scholar
[11]
Numata, H.; Nakase, J.; Kitaoka, K.; Shima, Y.; Oshima, T.; Takata, Y.; Shimozaki, K.; Tsuchiya, H. Two-dimensional motion analysis of dynamic knee valgus identifies female high school athletes at risk of non-contact anterior cruciate ligament injury. Knee Surgery, Sports Traumatology, Arthroscopy 2018, 26, 442-447.
DOI: 10.1007/s00167-017-4681-9
Google Scholar
[12]
Shih, K.-S.; Chien, H.-L.; Lu, T.-W.; Chang, C.-F.; Kuo, C.-C. Gait changes in individuals with bilateral hallux valgus reduce first metatarsophalangeal loading but increase knee abductor moments. Gait & posture 2014, 40, 38-42.
DOI: 10.1016/j.gaitpost.2014.02.011
Google Scholar
[13]
Kaya, D.; Atay, O.A.; Callaghan, M.J.; Cil, A.; Çağlar, O.; Citaker, S.; Yuksel, I.; Doral, M.N. Hallux valgus in patients with patellofemoral pain syndrome. Knee Surgery, Sports Traumatology, Arthroscopy 2009, 17, 1364-1367.
DOI: 10.1007/s00167-009-0775-3
Google Scholar
[14]
Xu, D.; Zhou, H.; Quan, W.; Gusztav, F.; Wang, M.; Baker, J.S.; Gu, Y. Accurately and effectively predict the ACL force: Utilizing biomechanical landing pattern before and after-fatigue. Computer Methods and Programs in Biomedicine 2023, 241, 107761.
DOI: 10.1016/j.cmpb.2023.107761
Google Scholar
[15]
Galica, A.M.; Hagedorn, T.J.; Dufour, A.B.; Riskowski, J.L.; Hillstrom, H.J.; Casey, V.A.; Hannan, M.T. Hallux valgus and plantar pressure loading: the Framingham foot study. Journal of foot and ankle research 2013, 6, 1-8.
DOI: 10.1186/1757-1146-6-42
Google Scholar
[16]
Wen, J.; Ding, Q.; Yu, Z.; Sun, W.; Wang, Q.; Wei, K. Adaptive changes of foot pressure in hallux valgus patients. Gait & Posture 2012, 36, 344-349.
DOI: 10.1016/j.gaitpost.2012.03.030
Google Scholar
[17]
Zhang, Y.; Awrejcewicz, J.; Szymanowska, O.; Shen, S.; Zhao, X.; Baker, J.S.; Gu, Y. Effects of severe hallux valgus on metatarsal stress and the metatarsophalangeal loading during balanced standing: A finite element analysis. Computers in biology and medicine 2018, 97, 1-7.
DOI: 10.1016/j.compbiomed.2018.04.010
Google Scholar
[18]
Deschamps, K.; Birch, I.; Desloovere, K.; Matricali, G.A. The impact of hallux valgus on foot kinematics: a cross-sectional, comparative study. Gait & posture 2010, 32, 102-106.
DOI: 10.1016/j.gaitpost.2010.03.017
Google Scholar
[19]
Coughlin, M.J.; Jones, C.P. Hallux valgus: demographics, etiology, and radiographic assessment. Foot & ankle international 2007, 28, 759-777.
DOI: 10.3113/fai.2007.0759
Google Scholar
[20]
Koshino, Y.; Ishida, T.; Yamanaka, M.; Ezawa, Y.; Okunuki, T.; Kobayashi, T.; Samukawa, M.; Saito, H.; Tohyama, H. Kinematics and muscle activities of the lower limb during a side-cutting task in subjects with chronic ankle instability. Knee Surgery, Sports Traumatology, Arthroscopy 2016, 24, 1071-1080.
DOI: 10.1007/s00167-015-3745-y
Google Scholar
[21]
Benoit, D.L.; Ramsey, D.K.; Lamontagne, M.; Xu, L.; Wretenberg, P.; Renström, P. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait & posture 2006, 24, 152-164.
DOI: 10.1016/j.gaitpost.2005.04.012
Google Scholar
[22]
Smale, K.B.; Potvin, B.M.; Shourijeh, M.S.; Benoit, D.L. Knee joint kinematics and kinetics during the hop and cut after soft tissue artifact suppression: Time to reconsider ACL injury mechanisms? Journal of Biomechanics 2017, 62, 132-139.
DOI: 10.1016/j.jbiomech.2017.06.049
Google Scholar
[23]
Iaquinto, J.M.; Tsai, R.; Haynor, D.R.; Fassbind, M.J.; Sangeorzan, B.J.; Ledoux, W.R. Marker-based validation of a biplane fluoroscopy system for quantifying foot kinematics. Medical engineering & physics 2014, 36, 391-396.
DOI: 10.1016/j.medengphy.2013.08.013
Google Scholar
[24]
Liu, Y.; Fernandez, J. Randomized Controlled Trial of Gastrocnemius Muscle Analysis Using Surface Electromyography and Ultrasound in Different Striking Patterns of Young Women's Barefoot Running', Physical Activity and Health, 2024, 8, 223–233.
DOI: 10.5334/paah.382
Google Scholar
[25]
Bauman, J.M.; Chang, Y.-H. High-speed X-ray video demonstrates significant skin movement errors with standard optical kinematics during rat locomotion. Journal of neuroscience methods 2010, 186, 18-24.
DOI: 10.1016/j.jneumeth.2009.10.017
Google Scholar
[26]
Garrow, A.P.; Papageorgiou, A.; Silman, A.J.; Thomas, E.; Jayson, M.I.; Macfarlane, G.J. The grading of hallux valgus: the Manchester Scale. Journal of the American Podiatric Medical Association 2001, 91, 74-78.
DOI: 10.7547/87507315-91-2-74
Google Scholar
[27]
Menz, H.B.; Munteanu, S.E. Radiographic validation of the Manchester scale for the classification of hallux valgus deformity. Rheumatology 2005, 44, 1061-1066.
DOI: 10.1093/rheumatology/keh687
Google Scholar
[28]
Zhou, H.; Xu, D.; Quan, W.; Ugbolue, U.C.; Zhou, Z.; Gu, Y. Can the entire function of the foot Be concentrated in the forefoot area during the running stance phase? A finite element study of different shoe soles. Journal of Human Kinetics 2023, 92, 5.
DOI: 10.5114/jhk/174311
Google Scholar
[29]
Xu, D.; Zhou, H.; Wang, M.; Ma, X.; Gusztav, F.; Chon, T.-E.; Fernandez, J.; Baker, J.S.; Gu, Y. Contribution of ankle motion pattern during landing to reduce the knee-related injury risk. Computers in Biology and Medicine 2024, 180, 108965.
DOI: 10.1016/j.compbiomed.2024.108965
Google Scholar
[30]
Cheng, H.-Y.K.; Lin, C.-L.; Wang, H.-W.; Chou, S.-W. Finite element analysis of plantar fascia under stretch—the relative contribution of windlass mechanism and Achilles tendon force. Journal of biomechanics 2008, 41, 1937-1944.
DOI: 10.1016/j.jbiomech.2008.03.028
Google Scholar
[31]
Crichton, M.L.; Donose, B.C.; Chen, X.; Raphael, A.P.; Huang, H.; Kendall, M.A. The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers. Biomaterials 2011, 32, 4670-4681.
DOI: 10.1016/j.biomaterials.2011.03.012
Google Scholar
[32]
Nolan, D.R.; Gower, A.L.; Destrade, M.; Ogden, R.W.; McGarry, J. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. Journal of the mechanical behavior of biomedical materials 2014, 39, 48-60.
DOI: 10.1016/j.jmbbm.2014.06.016
Google Scholar
[33]
Pailler-Mattei, C.; Bec, S.; Zahouani, H. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Medical engineering & physics 2008, 30, 599-606.
DOI: 10.1016/j.medengphy.2007.06.011
Google Scholar
[34]
Gu, Y.; Ren, X.; Li, J.; Lake, M.; Zhang, Q.; Zeng, Y. Computer simulation of stress distribution in the metatarsals at different inversion landing angles using the finite element method. International orthopaedics 2010, 34, 669-676.
DOI: 10.1007/s00264-009-0856-4
Google Scholar
[35]
Pena, E.; Calvo, B.; Martinez, M.; Doblare, M. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. Journal of biomechanics 2006, 39, 1686-1701.
DOI: 10.1016/j.jbiomech.2005.04.030
Google Scholar
[36]
Zhang, Y.; Awrejcewicz, J.; Baker, J.S.; Gu, Y. Cartilage stiffness effect on foot biomechanics of Chinese bound foot: a finite element analysis. Frontiers in Physiology 2018, 9, 1434.
DOI: 10.3389/fphys.2018.01434
Google Scholar
[37]
Haut Donahue, T.L.; Hull, M.; Rashid, M.M.; Jacobs, C.R. A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 2002, 124, 273-280.
DOI: 10.1115/1.1470171
Google Scholar
[38]
Su, W.; Zhang, S.; Ye, D.; Sun, X.; Zhang, X.; Fu, W. Effects of barefoot and shod on the in vivo kinematics of medial longitudinal arch during running based on a high-speed dual fluoroscopic imaging system. Frontiers in Bioengineering and Biotechnology 2022, 10, 917675.
DOI: 10.3389/fbioe.2022.917675
Google Scholar
[39]
Weisstein, E.W. Euler angles. https://mathworld. wolfram. com/ 2009.
Google Scholar
[40]
Ying, N.; Kim, W. Use of dual Euler angles to quantify the three-dimensional joint motion and its application to the ankle joint complex. Journal of Biomechanics 2002, 35, 1647-1657.
DOI: 10.1016/s0021-9290(02)00241-5
Google Scholar
[41]
Hu, M.; Li, Z.; Zhang, L.; Wang, C.; Wu, D.; Zhao, X.; Tsai, T.-Y.; Wang, S. In vivo kinematic changes of the medial longitudinal arch during barefoot and high-heeled shoes walking. Gait & Posture 2025, 117, 78-84.
DOI: 10.1016/j.gaitpost.2024.12.002
Google Scholar
[42]
Xu, D.; Lu, J.; Baker, J.S.; Fekete, G.; Gu, Y. Temporal kinematic and kinetics differences throughout different landing ways following volleyball spike shots. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology 2022, 236, 200-208.
DOI: 10.1177/17543371211009485
Google Scholar
[43]
Xu, D.; Quan, W.; Zhou, H.; Sun, D.; Baker, J.S.; Gu, Y. Explaining the differences of gait patterns between high and low-mileage runners with machine learning. Scientific reports 2022, 12, 2981.
DOI: 10.1038/s41598-022-07054-1
Google Scholar
[44]
Steinberg, N.; Finestone, A.; Noff, M.; Zeev, A.; Dar, G. Relationship between lower extremity alignment and hallux valgus in women. Foot & ankle international 2013, 34, 824-831.
DOI: 10.1177/1071100713478407
Google Scholar
[45]
Tanaka, Y.; Takakura, Y.; Fujii, T.; Kumai, T.; Sugimoto, K. Hindfoot alignment of hallux valgus evaluated by a weightbearing subtalar x-ray view. Foot & ankle international 1999, 20, 640-645.
DOI: 10.1177/107110079902001005
Google Scholar
[46]
Yavuz, M.; Hetherington, V.J.; Botek, G.; Hirschman, G.B.; Bardsley, L.; Davis, B.L. Forefoot plantar shear stress distribution in hallux valgus patients. Gait & posture 2009, 30, 257-259.
DOI: 10.1016/j.gaitpost.2009.05.002
Google Scholar
[47]
Chang, C.; Wang, Q.-F.; Guo, J.-C.; Li, D.-D.; Fan, Y.-B.; Wen, J.-M. The biomechanical relationship between hallux valgus deformity and metatarsal pain. Journal of healthcare engineering 2020, 2020, 8929153.
DOI: 10.1155/2020/8929153
Google Scholar
[48]
Yamaguchi, S.; Sasho, T.; Kato, H.; Kuroyanagi, Y.; Banks, S.A. Ankle and subtalar kinematics during dorsiflexion-plantarflexion activities. Foot & ankle international 2009, 30, 361-366.
DOI: 10.3113/fai.2009.0361
Google Scholar
[49]
Johanson, M.; Baer, J.; Hovermale, H.; Phouthavong, P. Subtalar joint position during gastrocnemius stretching and ankle dorsiflexion range of motion. Journal of athletic training 2008, 43, 172-178.
DOI: 10.4085/1062-6050-43.2.172
Google Scholar
[50]
Johanson, M.A.; DeArment, A.; Hines, K.; Riley, E.; Martin, M.; Thomas, J.; Geist, K. The effect of subtalar joint position on dorsiflexion of the ankle/rearfoot versus midfoot/forefoot during gastrocnemius stretching. Foot & Ankle International 2014, 35, 63-70.
DOI: 10.1177/1071100713513433
Google Scholar
[51]
Dempsey, A.R.; Lloyd, D.G.; Elliott, B.C.; Steele, J.R.; Munro, B.J. Changing sidestep cutting technique reduces knee valgus loading. The American journal of sports medicine 2009, 37, 2194-2200.
DOI: 10.1177/0363546509334373
Google Scholar
[52]
Yu, P.; Fernandez, J. Alterations in Lower Limb Biomechanical Characteristics During the Cutting Manoeuvre in Chronic Ankle Instability Population and Copers. Physical Activity and Health 2024.
DOI: 10.5334/paah.380
Google Scholar
[53]
Raza, A.; Mahmood, I.; Sultana, T. Evaluation of weight-bearing, walking stability, and gait symmetry in patients undergoing restoration following hip joint fractures. International Journal of Biomedical Engineering and Technology 2025, 47, 195-213.
DOI: 10.1504/ijbet.2025.144945
Google Scholar
[54]
Sangeorzan, B.J.; Wagner, U.A.; Harrington, R.M.; Tencer, A.F. Contact characteristics of the subtalar joint: the effect of talar neck misalignment. Journal of orthopaedic research 1992, 10, 544-551.
DOI: 10.1002/jor.1100100409
Google Scholar
[55]
Lee, T.Q.; Yang, B.Y.; Sandusky, M.D.; McMahon, P.J. The effects of tibial rotation on the patellofemoral joint: assessment of the changes in in situ strain in the peripatellar retinaculum and the patellofemoral contact pressures and areas. Journal of rehabilitation research and development 2014, 38, 463-469.
Google Scholar
[56]
Hefzy, M.; Jackson, W.; Saddemi, S.; Hsieh, Y.-F. Effects of tibial rotations on patellar tracking and patello-femoral contact areas. Journal of biomedical engineering 1992, 14, 329-343.
DOI: 10.1016/0141-5425(92)90008-9
Google Scholar
[57]
Ferber, R.; Davis, I.M.; Williams III, D.S. Effect of foot orthotics on rearfoot and tibia joint coupling patterns and variability. Journal of biomechanics 2005, 38, 477-483.
DOI: 10.1016/j.jbiomech.2004.04.019
Google Scholar
[58]
Peltz, C.D.; Haladik, J.A.; Hoffman, S.E.; McDonald, M.; Ramo, N.L.; Divine, G.; Nurse, M.; Bey, M.J. Effects of footwear on three-dimensional tibiotalar and subtalar joint motion during running. Journal of biomechanics 2014, 47, 2647-2653.
DOI: 10.1016/j.jbiomech.2014.05.016
Google Scholar
[59]
Petrovszki, Z.; Czimbalmos, O.; Gal, V.; Korosi, G.; Nagy, E.; Mikulan, R; Horvath, G. Age- and Post-Based Complex Analyses of Heart Rate Variability in Young Male Handball Players for Potential Prevention of Overload-induced Injuries. Physical Activity and Health, 2025, 9, 67–82.
DOI: 10.5334/paah.427
Google Scholar
[60]
Jie, T.; Xu, D.; Zhang, Z.; Teo, E.-C.; Baker, J.S.; Zhou, H.; Gu, Y. Structural and Organizational Strategies of Locomotor Modules during Landing in Patients with Chronic Ankle Instability. Bioengineering 2024, 11, 518.
DOI: 10.3390/bioengineering11050518
Google Scholar
[61]
Zhou, Z.Y.; Gao, Z.X.; Li S.D. The effect of fatigue on lower limb coordination characteristics in badminton forehand smash: a functional principal component analysis. International Journal of Biomedical Engineering and Technology 2025, 48, 138-154.
DOI: 10.1504/ijbet.2025.147084
Google Scholar