Dynamic Biomechanical Consequences of Hallux Valgus: A Multimodal Investigation of Lower Limb Compensation Patterns

Article Preview

Abstract:

Hallux valgus (HV), characterized by triplanar deviation of the first metatarsophalangeal joint, significantly alters foot biomechanics and provokes adaptations along the kinetic chain. While its static effects are well-documented, its dynamic impact during high-velocity, multiplanar maneuvers remains unclear. This study investigated the dose-dependent relationship between HV severity and lower limb stability during side-cutting using a novel multimodal validation framework. Sixty-six male participants (n = 22 per group: normal, mild, and moderate HV) underwent biomechanical evaluation through three-dimensional motion capture, inverse dynamics-driven finite element (FE) modeling, and dynamic fluoroscopy. Real-time bone displacement was quantified using shape-matching algorithms to validate FE simulations. Results indicated compensatory adaptations in HV groups, such as reduced first metatarsal dorsiflexion and external rotation of the first metatarsophalangeal joint. Dynamic fluoroscopic data revealed progressive displacement in the tibiotalar and subtalar joints, with significantly increased posterior glide (p < 0.001). Kinematic correlations showed a decline in ankle plantarflexion (p < 0.001) and hip flexion (p < 0.001) with advancing HV severity, while moderate HV was associated with significantly greater knee valgus angles (R² = 0.47, p < 0.001). FE simulations demonstrated a non-linear increase in contact pressures at the first MTPJ and lateral metatarsal overload. These findings reveal that HV induces a compensatory kinematic cascade through load redistribution and altered joint dynamics, destabilizing three-dimensional lower limb alignment. By linking pathological tissue loads to vector field shifts, this multiscale framework enhances our understanding of injury mechanisms and offers insights into kinematic chain optimization for injury prevention.

You might also be interested in these eBooks

Info:

Pages:

133-151

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ray, J.J.; Friedmann, A.J.; Hanselman, A.E.; Vaida, J.; Dayton, P.D.; Hatch, D.J.; Smith, B.; Santrock, R.D. Hallux valgus. Foot & ankle orthopaedics 2019, 4, 2473011419838500.

DOI: 10.1177/2473011419838500

Google Scholar

[2] Robinson, A.; Limbers, J. Modern concepts in the treatment of hallux valgus. The Journal of Bone & Joint Surgery British Volume 2005, 87, 1038-1045.

DOI: 10.1302/0301-620x.87b8.16467

Google Scholar

[3] Nix, S.; Smith, M.; Vicenzino, B. Prevalence of hallux valgus in the general population: a systematic review and meta-analysis. Journal of Foot and Ankle Research 2010, 3, 21.

DOI: 10.1186/1757-1146-3-21

Google Scholar

[4] Wülker, N.; Mittag, F. The treatment of hallux valgus. Deutsches Ärzteblatt International 2012, 109, 857.

DOI: 10.3238/arztebl.2012.0857

Google Scholar

[5] Xu, D.; Zhou, H.; Quan, W.; Ma, X.; Chon, T.-E.; Fernandez, J.; Gusztav, F.; Kovács, A.; Baker, J.S.; Gu, Y. New insights optimize landing strategies to reduce lower limb injury risk. Cyborg and Bionic Systems 2024, 5, 0126.

DOI: 10.34133/cbsystems.0126

Google Scholar

[6] Glasoe, W.M.; Nuckley, D.J.; Ludewig, P.M. Hallux valgus and the first metatarsal arch segment: a theoretical biomechanical perspective. Physical therapy 2010, 90, 110-120.

DOI: 10.2522/ptj.20080298

Google Scholar

[7] Xu, D.; Zhou, H.; Quan, W.; Jiang, X.; Liang, M.; Li, S.; Ugbolue, U.C.; Baker, J.S.; Gusztav, F.; Ma, X. A new method proposed for realizing human gait pattern recognition: Inspirations for the application of sports and clinical gait analysis. Gait & Posture 2024, 107, 293-305.

DOI: 10.1016/j.gaitpost.2023.10.019

Google Scholar

[8] Hutton, W.; Dhanendran, M. The mechanics of normal and hallux valgus feet—a quantitative study. Clinical Orthopaedics and Related Research® 1981, 157, 7-13.

DOI: 10.1097/00003086-198106000-00004

Google Scholar

[9] Teng, P.S.P.; Kong, P.W.; Leong, K.F. Effects of foot rotation positions on knee valgus during single-leg drop landing: Implications for ACL injury risk reduction. The knee 2017, 24, 547-554.

DOI: 10.1016/j.knee.2017.01.014

Google Scholar

[10] Qu, X.; Xu, D.; Yang, X.; Ugbolue, U.C.; Zhou, H.; Gu, Y. Exploring the Relationship Between Foot Position and Reduced Risk of Knee-Related Injuries in Side-Cutting Movements. Applied Sciences 2024, 14, 11295.

DOI: 10.3390/app142311295

Google Scholar

[11] Numata, H.; Nakase, J.; Kitaoka, K.; Shima, Y.; Oshima, T.; Takata, Y.; Shimozaki, K.; Tsuchiya, H. Two-dimensional motion analysis of dynamic knee valgus identifies female high school athletes at risk of non-contact anterior cruciate ligament injury. Knee Surgery, Sports Traumatology, Arthroscopy 2018, 26, 442-447.

DOI: 10.1007/s00167-017-4681-9

Google Scholar

[12] Shih, K.-S.; Chien, H.-L.; Lu, T.-W.; Chang, C.-F.; Kuo, C.-C. Gait changes in individuals with bilateral hallux valgus reduce first metatarsophalangeal loading but increase knee abductor moments. Gait & posture 2014, 40, 38-42.

DOI: 10.1016/j.gaitpost.2014.02.011

Google Scholar

[13] Kaya, D.; Atay, O.A.; Callaghan, M.J.; Cil, A.; Çağlar, O.; Citaker, S.; Yuksel, I.; Doral, M.N. Hallux valgus in patients with patellofemoral pain syndrome. Knee Surgery, Sports Traumatology, Arthroscopy 2009, 17, 1364-1367.

DOI: 10.1007/s00167-009-0775-3

Google Scholar

[14] Xu, D.; Zhou, H.; Quan, W.; Gusztav, F.; Wang, M.; Baker, J.S.; Gu, Y. Accurately and effectively predict the ACL force: Utilizing biomechanical landing pattern before and after-fatigue. Computer Methods and Programs in Biomedicine 2023, 241, 107761.

DOI: 10.1016/j.cmpb.2023.107761

Google Scholar

[15] Galica, A.M.; Hagedorn, T.J.; Dufour, A.B.; Riskowski, J.L.; Hillstrom, H.J.; Casey, V.A.; Hannan, M.T. Hallux valgus and plantar pressure loading: the Framingham foot study. Journal of foot and ankle research 2013, 6, 1-8.

DOI: 10.1186/1757-1146-6-42

Google Scholar

[16] Wen, J.; Ding, Q.; Yu, Z.; Sun, W.; Wang, Q.; Wei, K. Adaptive changes of foot pressure in hallux valgus patients. Gait & Posture 2012, 36, 344-349.

DOI: 10.1016/j.gaitpost.2012.03.030

Google Scholar

[17] Zhang, Y.; Awrejcewicz, J.; Szymanowska, O.; Shen, S.; Zhao, X.; Baker, J.S.; Gu, Y. Effects of severe hallux valgus on metatarsal stress and the metatarsophalangeal loading during balanced standing: A finite element analysis. Computers in biology and medicine 2018, 97, 1-7.

DOI: 10.1016/j.compbiomed.2018.04.010

Google Scholar

[18] Deschamps, K.; Birch, I.; Desloovere, K.; Matricali, G.A. The impact of hallux valgus on foot kinematics: a cross-sectional, comparative study. Gait & posture 2010, 32, 102-106.

DOI: 10.1016/j.gaitpost.2010.03.017

Google Scholar

[19] Coughlin, M.J.; Jones, C.P. Hallux valgus: demographics, etiology, and radiographic assessment. Foot & ankle international 2007, 28, 759-777.

DOI: 10.3113/fai.2007.0759

Google Scholar

[20] Koshino, Y.; Ishida, T.; Yamanaka, M.; Ezawa, Y.; Okunuki, T.; Kobayashi, T.; Samukawa, M.; Saito, H.; Tohyama, H. Kinematics and muscle activities of the lower limb during a side-cutting task in subjects with chronic ankle instability. Knee Surgery, Sports Traumatology, Arthroscopy 2016, 24, 1071-1080.

DOI: 10.1007/s00167-015-3745-y

Google Scholar

[21] Benoit, D.L.; Ramsey, D.K.; Lamontagne, M.; Xu, L.; Wretenberg, P.; Renström, P. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait & posture 2006, 24, 152-164.

DOI: 10.1016/j.gaitpost.2005.04.012

Google Scholar

[22] Smale, K.B.; Potvin, B.M.; Shourijeh, M.S.; Benoit, D.L. Knee joint kinematics and kinetics during the hop and cut after soft tissue artifact suppression: Time to reconsider ACL injury mechanisms? Journal of Biomechanics 2017, 62, 132-139.

DOI: 10.1016/j.jbiomech.2017.06.049

Google Scholar

[23] Iaquinto, J.M.; Tsai, R.; Haynor, D.R.; Fassbind, M.J.; Sangeorzan, B.J.; Ledoux, W.R. Marker-based validation of a biplane fluoroscopy system for quantifying foot kinematics. Medical engineering & physics 2014, 36, 391-396.

DOI: 10.1016/j.medengphy.2013.08.013

Google Scholar

[24] Liu, Y.; Fernandez, J. Randomized Controlled Trial of Gastrocnemius Muscle Analysis Using Surface Electromyography and Ultrasound in Different Striking Patterns of Young Women's Barefoot Running', Physical Activity and Health, 2024, 8, 223–233.

DOI: 10.5334/paah.382

Google Scholar

[25] Bauman, J.M.; Chang, Y.-H. High-speed X-ray video demonstrates significant skin movement errors with standard optical kinematics during rat locomotion. Journal of neuroscience methods 2010, 186, 18-24.

DOI: 10.1016/j.jneumeth.2009.10.017

Google Scholar

[26] Garrow, A.P.; Papageorgiou, A.; Silman, A.J.; Thomas, E.; Jayson, M.I.; Macfarlane, G.J. The grading of hallux valgus: the Manchester Scale. Journal of the American Podiatric Medical Association 2001, 91, 74-78.

DOI: 10.7547/87507315-91-2-74

Google Scholar

[27] Menz, H.B.; Munteanu, S.E. Radiographic validation of the Manchester scale for the classification of hallux valgus deformity. Rheumatology 2005, 44, 1061-1066.

DOI: 10.1093/rheumatology/keh687

Google Scholar

[28] Zhou, H.; Xu, D.; Quan, W.; Ugbolue, U.C.; Zhou, Z.; Gu, Y. Can the entire function of the foot Be concentrated in the forefoot area during the running stance phase? A finite element study of different shoe soles. Journal of Human Kinetics 2023, 92, 5.

DOI: 10.5114/jhk/174311

Google Scholar

[29] Xu, D.; Zhou, H.; Wang, M.; Ma, X.; Gusztav, F.; Chon, T.-E.; Fernandez, J.; Baker, J.S.; Gu, Y. Contribution of ankle motion pattern during landing to reduce the knee-related injury risk. Computers in Biology and Medicine 2024, 180, 108965.

DOI: 10.1016/j.compbiomed.2024.108965

Google Scholar

[30] Cheng, H.-Y.K.; Lin, C.-L.; Wang, H.-W.; Chou, S.-W. Finite element analysis of plantar fascia under stretch—the relative contribution of windlass mechanism and Achilles tendon force. Journal of biomechanics 2008, 41, 1937-1944.

DOI: 10.1016/j.jbiomech.2008.03.028

Google Scholar

[31] Crichton, M.L.; Donose, B.C.; Chen, X.; Raphael, A.P.; Huang, H.; Kendall, M.A. The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers. Biomaterials 2011, 32, 4670-4681.

DOI: 10.1016/j.biomaterials.2011.03.012

Google Scholar

[32] Nolan, D.R.; Gower, A.L.; Destrade, M.; Ogden, R.W.; McGarry, J. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. Journal of the mechanical behavior of biomedical materials 2014, 39, 48-60.

DOI: 10.1016/j.jmbbm.2014.06.016

Google Scholar

[33] Pailler-Mattei, C.; Bec, S.; Zahouani, H. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Medical engineering & physics 2008, 30, 599-606.

DOI: 10.1016/j.medengphy.2007.06.011

Google Scholar

[34] Gu, Y.; Ren, X.; Li, J.; Lake, M.; Zhang, Q.; Zeng, Y. Computer simulation of stress distribution in the metatarsals at different inversion landing angles using the finite element method. International orthopaedics 2010, 34, 669-676.

DOI: 10.1007/s00264-009-0856-4

Google Scholar

[35] Pena, E.; Calvo, B.; Martinez, M.; Doblare, M. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. Journal of biomechanics 2006, 39, 1686-1701.

DOI: 10.1016/j.jbiomech.2005.04.030

Google Scholar

[36] Zhang, Y.; Awrejcewicz, J.; Baker, J.S.; Gu, Y. Cartilage stiffness effect on foot biomechanics of Chinese bound foot: a finite element analysis. Frontiers in Physiology 2018, 9, 1434.

DOI: 10.3389/fphys.2018.01434

Google Scholar

[37] Haut Donahue, T.L.; Hull, M.; Rashid, M.M.; Jacobs, C.R. A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 2002, 124, 273-280.

DOI: 10.1115/1.1470171

Google Scholar

[38] Su, W.; Zhang, S.; Ye, D.; Sun, X.; Zhang, X.; Fu, W. Effects of barefoot and shod on the in vivo kinematics of medial longitudinal arch during running based on a high-speed dual fluoroscopic imaging system. Frontiers in Bioengineering and Biotechnology 2022, 10, 917675.

DOI: 10.3389/fbioe.2022.917675

Google Scholar

[39] Weisstein, E.W. Euler angles. https://mathworld. wolfram. com/ 2009.

Google Scholar

[40] Ying, N.; Kim, W. Use of dual Euler angles to quantify the three-dimensional joint motion and its application to the ankle joint complex. Journal of Biomechanics 2002, 35, 1647-1657.

DOI: 10.1016/s0021-9290(02)00241-5

Google Scholar

[41] Hu, M.; Li, Z.; Zhang, L.; Wang, C.; Wu, D.; Zhao, X.; Tsai, T.-Y.; Wang, S. In vivo kinematic changes of the medial longitudinal arch during barefoot and high-heeled shoes walking. Gait & Posture 2025, 117, 78-84.

DOI: 10.1016/j.gaitpost.2024.12.002

Google Scholar

[42] Xu, D.; Lu, J.; Baker, J.S.; Fekete, G.; Gu, Y. Temporal kinematic and kinetics differences throughout different landing ways following volleyball spike shots. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology 2022, 236, 200-208.

DOI: 10.1177/17543371211009485

Google Scholar

[43] Xu, D.; Quan, W.; Zhou, H.; Sun, D.; Baker, J.S.; Gu, Y. Explaining the differences of gait patterns between high and low-mileage runners with machine learning. Scientific reports 2022, 12, 2981.

DOI: 10.1038/s41598-022-07054-1

Google Scholar

[44] Steinberg, N.; Finestone, A.; Noff, M.; Zeev, A.; Dar, G. Relationship between lower extremity alignment and hallux valgus in women. Foot & ankle international 2013, 34, 824-831.

DOI: 10.1177/1071100713478407

Google Scholar

[45] Tanaka, Y.; Takakura, Y.; Fujii, T.; Kumai, T.; Sugimoto, K. Hindfoot alignment of hallux valgus evaluated by a weightbearing subtalar x-ray view. Foot & ankle international 1999, 20, 640-645.

DOI: 10.1177/107110079902001005

Google Scholar

[46] Yavuz, M.; Hetherington, V.J.; Botek, G.; Hirschman, G.B.; Bardsley, L.; Davis, B.L. Forefoot plantar shear stress distribution in hallux valgus patients. Gait & posture 2009, 30, 257-259.

DOI: 10.1016/j.gaitpost.2009.05.002

Google Scholar

[47] Chang, C.; Wang, Q.-F.; Guo, J.-C.; Li, D.-D.; Fan, Y.-B.; Wen, J.-M. The biomechanical relationship between hallux valgus deformity and metatarsal pain. Journal of healthcare engineering 2020, 2020, 8929153.

DOI: 10.1155/2020/8929153

Google Scholar

[48] Yamaguchi, S.; Sasho, T.; Kato, H.; Kuroyanagi, Y.; Banks, S.A. Ankle and subtalar kinematics during dorsiflexion-plantarflexion activities. Foot & ankle international 2009, 30, 361-366.

DOI: 10.3113/fai.2009.0361

Google Scholar

[49] Johanson, M.; Baer, J.; Hovermale, H.; Phouthavong, P. Subtalar joint position during gastrocnemius stretching and ankle dorsiflexion range of motion. Journal of athletic training 2008, 43, 172-178.

DOI: 10.4085/1062-6050-43.2.172

Google Scholar

[50] Johanson, M.A.; DeArment, A.; Hines, K.; Riley, E.; Martin, M.; Thomas, J.; Geist, K. The effect of subtalar joint position on dorsiflexion of the ankle/rearfoot versus midfoot/forefoot during gastrocnemius stretching. Foot & Ankle International 2014, 35, 63-70.

DOI: 10.1177/1071100713513433

Google Scholar

[51] Dempsey, A.R.; Lloyd, D.G.; Elliott, B.C.; Steele, J.R.; Munro, B.J. Changing sidestep cutting technique reduces knee valgus loading. The American journal of sports medicine 2009, 37, 2194-2200.

DOI: 10.1177/0363546509334373

Google Scholar

[52] Yu, P.; Fernandez, J. Alterations in Lower Limb Biomechanical Characteristics During the Cutting Manoeuvre in Chronic Ankle Instability Population and Copers. Physical Activity and Health 2024.

DOI: 10.5334/paah.380

Google Scholar

[53] Raza, A.; Mahmood, I.; Sultana, T. Evaluation of weight-bearing, walking stability, and gait symmetry in patients undergoing restoration following hip joint fractures. International Journal of Biomedical Engineering and Technology 2025, 47, 195-213.

DOI: 10.1504/ijbet.2025.144945

Google Scholar

[54] Sangeorzan, B.J.; Wagner, U.A.; Harrington, R.M.; Tencer, A.F. Contact characteristics of the subtalar joint: the effect of talar neck misalignment. Journal of orthopaedic research 1992, 10, 544-551.

DOI: 10.1002/jor.1100100409

Google Scholar

[55] Lee, T.Q.; Yang, B.Y.; Sandusky, M.D.; McMahon, P.J. The effects of tibial rotation on the patellofemoral joint: assessment of the changes in in situ strain in the peripatellar retinaculum and the patellofemoral contact pressures and areas. Journal of rehabilitation research and development 2014, 38, 463-469.

Google Scholar

[56] Hefzy, M.; Jackson, W.; Saddemi, S.; Hsieh, Y.-F. Effects of tibial rotations on patellar tracking and patello-femoral contact areas. Journal of biomedical engineering 1992, 14, 329-343.

DOI: 10.1016/0141-5425(92)90008-9

Google Scholar

[57] Ferber, R.; Davis, I.M.; Williams III, D.S. Effect of foot orthotics on rearfoot and tibia joint coupling patterns and variability. Journal of biomechanics 2005, 38, 477-483.

DOI: 10.1016/j.jbiomech.2004.04.019

Google Scholar

[58] Peltz, C.D.; Haladik, J.A.; Hoffman, S.E.; McDonald, M.; Ramo, N.L.; Divine, G.; Nurse, M.; Bey, M.J. Effects of footwear on three-dimensional tibiotalar and subtalar joint motion during running. Journal of biomechanics 2014, 47, 2647-2653.

DOI: 10.1016/j.jbiomech.2014.05.016

Google Scholar

[59] Petrovszki, Z.; Czimbalmos, O.; Gal, V.; Korosi, G.; Nagy, E.; Mikulan, R; Horvath, G. Age- and Post-Based Complex Analyses of Heart Rate Variability in Young Male Handball Players for Potential Prevention of Overload-induced Injuries. Physical Activity and Health, 2025, 9, 67–82.

DOI: 10.5334/paah.427

Google Scholar

[60] Jie, T.; Xu, D.; Zhang, Z.; Teo, E.-C.; Baker, J.S.; Zhou, H.; Gu, Y. Structural and Organizational Strategies of Locomotor Modules during Landing in Patients with Chronic Ankle Instability. Bioengineering 2024, 11, 518.

DOI: 10.3390/bioengineering11050518

Google Scholar

[61] Zhou, Z.Y.; Gao, Z.X.; Li S.D. The effect of fatigue on lower limb coordination characteristics in badminton forehand smash: a functional principal component analysis. International Journal of Biomedical Engineering and Technology 2025, 48, 138-154.

DOI: 10.1504/ijbet.2025.147084

Google Scholar