Optimizing Dental Implant Viability with SLA and Anodizing Surface Treatments for Advanced Biological Adhesion, Enhanced Osseointegration, and Stress Resistance

Article Preview

Abstract:

This study systematically evaluated nine surface treatment conditions on titanium dental implant fixtures, combining Sandblasted Large Grit Acid-etched (SLA) with anodizing methods. A total of 112 samples were characterized using FESEM, EDAX, MTT, wettability, surface energy, and osseointegration analyses. Among the tested protocols, the SLA+Anodizing process with the following parameters proved most effective: sandblasting with 75 µm particles at 4 bar and 30° angle, acid etching at 75°C for 6 minutes, and anodizing at 100 V for 5 minutes. This optimized surface demonstrated superior outcomes, including 97% cell viability, enhanced osseointegration within twelve days, and a chemical composition consistent with Grade 5 titanium alloy (Ti-6Al-4V), typically comprising approximately 90% Ti, 6% Al, 4% V, and trace amounts of O, Fe, and other elements.

You might also be interested in these eBooks

Info:

Pages:

63-77

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mohammadi B., Anbarzadeh E., Evaluation of Viability and Cell Proliferation in Bone and Gingival on Dental Implant Fixtures with Active Sandblasted and Sandblasted Surfaces by the Cytotoxicity Test Method, J. Biomimetics, Biomaterials and Biomedical Eng. 56 (2022) 165-172.

DOI: 10.4028/p-gmmc8m

Google Scholar

[2] Anbarzadeh E., Mohammadi B., Improving the surface roughness of dental implant fixture by considering the size, angle and spraying pressure of sandblast particles, J. Bionic Eng. 4 (2023) 1-22.

DOI: 10.1007/s42235-023-00422-1

Google Scholar

[3] Mohammadi B., Abdoli Z., Anbarzadeh E., Investigation of the effect of abutment angle tolerance on the stress created in the fixture and screw in dental implants using finite element analysis, J. Biomimetics, Biomaterials and Biomedical Eng. 51 (2021) 63-76.

DOI: 10.4028/www.scientific.net/jbbbe.51.63

Google Scholar

[4] Lausmaa J., Mechanical, thermal, chemical and electrochemical surface treatment of titanium, Titanium in medicine: material science, surface science, engineering, biological responses and medical applications, 2001, 231-66.

DOI: 10.1007/978-3-642-56486-4_8

Google Scholar

[5] Elias C.N., Oshida Y., Lima J.H., Muller C.A., Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque, J. Mech. Behav. Biomed. Mater. 1 (2008) 234-42.

DOI: 10.1016/j.jmbbm.2007.12.002

Google Scholar

[6] Minagar S., Berndt C.C., Wang J., Ivanova E., Wen C., A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces, Acta Biomater. 8 (2012) 2875-88.

DOI: 10.1016/j.actbio.2012.04.005

Google Scholar

[7] Chrcanovic B.R., Pedrosa A.R., Martins M.D., Chemical and topographic analysis of treated surfaces of five different commercial dental titanium implants, Mater. Res. 15 (2012) 372-82.

DOI: 10.1590/s1516-14392012005000035

Google Scholar

[8] Patel S.B., Hamlekhan A., Royhman D., Butt A., Yuan J., Shokuhfar T., Sukotjo C., Mathew M.T., Jursich G., Takoudis C.G., Enhancing surface characteristics of Ti–6Al–4V for bio-implants using integrated anodization and thermal oxidation, J. Mater. Chem. B 2 (2014) 3597-608.

DOI: 10.1039/c3tb21731k

Google Scholar

[9] Wang L.N., Jin M., Zheng Y., Guan Y., Lu X., Luo J.L., Nanotubular surface modification of metallic implants via electrochemical anodization technique, Int. J. Nanomed. 9(2014)4421-35.

DOI: 10.2147/ijn.s65866

Google Scholar

[10] Seo B.Y., Kim Y.M., Choi J.W., Yun M.J., Jeon Y.C., Jeong C.M., Kim G.C., Huh J.B., The effect of blasting and anodizing-combined treatment of implant surface on response of osteoblast-like cell, J. Korean Acad. Prosthodont. 53 (2015) 9-18.

DOI: 10.4047/jkap.2015.53.1.9

Google Scholar

[11] Kim M.H., Park K., Choi K.H., Kim S.H., Kim S.E., Jeong C.M., Huh J.B., Cell adhesion and in vivo osseointegration of sandblasted/acid etched/anodized dental implants, Int. J. Mol. Sci. 16 (2015) 10324-36.

DOI: 10.3390/ijms160510324

Google Scholar

[12] Shayganpour A., Rebaudi A., Cortella P., Diaspro A., Salerno M., Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration, Beilstein J. Nanotechnol. 6 (2015) 2183-92.

DOI: 10.3762/bjnano.6.224

Google Scholar

[13] Feng Y.B., Yan W.Q., Yang D.S., Feng J., Wang X.X., Zhang S., Biological and biomechanical properties of chemically modified SLA titanium implants in vitro and in vivo, Key Eng. Mater. 309 (2006) 399-402.

DOI: 10.4028/www.scientific.net/kem.309-311.399

Google Scholar

[14] Luo S.L., Yang Z.H., Lin M., Xu X., Zhang Y.H., Guo B., Dong L.L., Characterization and Bioactivity of Ti-6Al-4V Alloy Dental Implant Surface Treated by SLA Technique, Adv. Mater. Res. 926 (2014) 965-968.

DOI: 10.4028/www.scientific.net/amr.926-930.965

Google Scholar

[15] Li Y., Yin Y., Zhang C.Y., Hu F.H., The Implementation of SLA Mechanism in Manufacturing Grid, Adv. Mater. Res. 934 (2014) 249-254.

DOI: 10.4028/www.scientific.net/amr.934.249

Google Scholar

[16] Htet M., Madi M., Zakaria O., Miyahara T., Xin W., Lin Z., Aoki K., Kasugai S., Decontamination of anodized implant surface with different modalities for peri‐implantitis treatment: lasers and mechanical debridement with citric acid, J. Periodontol. 87 (2016) 953-61.

DOI: 10.1902/jop.2016.150615

Google Scholar

[17] Rasouli R., Barhoum A., Uludag H., A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance, Biomater. Sci. 6 (2018) 1312-38.

DOI: 10.1039/c8bm00021b

Google Scholar

[18] Anbarzadeh E., Mohammadi B., Investigation of the Effects of Sandblasting, Acid Etching, and Anodizing Parameters in the SLA+ Anodizing on the Surface Treatment of Titanium Dental Implant Fixtures, Phys. Met. Metallogr. 29 (2023) 1-4.

DOI: 10.1134/s0031918x23600793

Google Scholar

[19] Anbarzadeh E., Mohammadi B., Azadzaeim M., Effects of acid etching parameters on the surface of dental implant fixtures treated by proposed coupled SLA-anodizing process, J. Mater. Res. 38 (2023) 4951-66.

DOI: 10.1557/s43578-023-01205-4

Google Scholar