[1]
Mohammadi B., Anbarzadeh E., Evaluation of Viability and Cell Proliferation in Bone and Gingival on Dental Implant Fixtures with Active Sandblasted and Sandblasted Surfaces by the Cytotoxicity Test Method, J. Biomimetics, Biomaterials and Biomedical Eng. 56 (2022) 165-172.
DOI: 10.4028/p-gmmc8m
Google Scholar
[2]
Anbarzadeh E., Mohammadi B., Improving the surface roughness of dental implant fixture by considering the size, angle and spraying pressure of sandblast particles, J. Bionic Eng. 4 (2023) 1-22.
DOI: 10.1007/s42235-023-00422-1
Google Scholar
[3]
Mohammadi B., Abdoli Z., Anbarzadeh E., Investigation of the effect of abutment angle tolerance on the stress created in the fixture and screw in dental implants using finite element analysis, J. Biomimetics, Biomaterials and Biomedical Eng. 51 (2021) 63-76.
DOI: 10.4028/www.scientific.net/jbbbe.51.63
Google Scholar
[4]
Lausmaa J., Mechanical, thermal, chemical and electrochemical surface treatment of titanium, Titanium in medicine: material science, surface science, engineering, biological responses and medical applications, 2001, 231-66.
DOI: 10.1007/978-3-642-56486-4_8
Google Scholar
[5]
Elias C.N., Oshida Y., Lima J.H., Muller C.A., Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque, J. Mech. Behav. Biomed. Mater. 1 (2008) 234-42.
DOI: 10.1016/j.jmbbm.2007.12.002
Google Scholar
[6]
Minagar S., Berndt C.C., Wang J., Ivanova E., Wen C., A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces, Acta Biomater. 8 (2012) 2875-88.
DOI: 10.1016/j.actbio.2012.04.005
Google Scholar
[7]
Chrcanovic B.R., Pedrosa A.R., Martins M.D., Chemical and topographic analysis of treated surfaces of five different commercial dental titanium implants, Mater. Res. 15 (2012) 372-82.
DOI: 10.1590/s1516-14392012005000035
Google Scholar
[8]
Patel S.B., Hamlekhan A., Royhman D., Butt A., Yuan J., Shokuhfar T., Sukotjo C., Mathew M.T., Jursich G., Takoudis C.G., Enhancing surface characteristics of Ti–6Al–4V for bio-implants using integrated anodization and thermal oxidation, J. Mater. Chem. B 2 (2014) 3597-608.
DOI: 10.1039/c3tb21731k
Google Scholar
[9]
Wang L.N., Jin M., Zheng Y., Guan Y., Lu X., Luo J.L., Nanotubular surface modification of metallic implants via electrochemical anodization technique, Int. J. Nanomed. 9(2014)4421-35.
DOI: 10.2147/ijn.s65866
Google Scholar
[10]
Seo B.Y., Kim Y.M., Choi J.W., Yun M.J., Jeon Y.C., Jeong C.M., Kim G.C., Huh J.B., The effect of blasting and anodizing-combined treatment of implant surface on response of osteoblast-like cell, J. Korean Acad. Prosthodont. 53 (2015) 9-18.
DOI: 10.4047/jkap.2015.53.1.9
Google Scholar
[11]
Kim M.H., Park K., Choi K.H., Kim S.H., Kim S.E., Jeong C.M., Huh J.B., Cell adhesion and in vivo osseointegration of sandblasted/acid etched/anodized dental implants, Int. J. Mol. Sci. 16 (2015) 10324-36.
DOI: 10.3390/ijms160510324
Google Scholar
[12]
Shayganpour A., Rebaudi A., Cortella P., Diaspro A., Salerno M., Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration, Beilstein J. Nanotechnol. 6 (2015) 2183-92.
DOI: 10.3762/bjnano.6.224
Google Scholar
[13]
Feng Y.B., Yan W.Q., Yang D.S., Feng J., Wang X.X., Zhang S., Biological and biomechanical properties of chemically modified SLA titanium implants in vitro and in vivo, Key Eng. Mater. 309 (2006) 399-402.
DOI: 10.4028/www.scientific.net/kem.309-311.399
Google Scholar
[14]
Luo S.L., Yang Z.H., Lin M., Xu X., Zhang Y.H., Guo B., Dong L.L., Characterization and Bioactivity of Ti-6Al-4V Alloy Dental Implant Surface Treated by SLA Technique, Adv. Mater. Res. 926 (2014) 965-968.
DOI: 10.4028/www.scientific.net/amr.926-930.965
Google Scholar
[15]
Li Y., Yin Y., Zhang C.Y., Hu F.H., The Implementation of SLA Mechanism in Manufacturing Grid, Adv. Mater. Res. 934 (2014) 249-254.
DOI: 10.4028/www.scientific.net/amr.934.249
Google Scholar
[16]
Htet M., Madi M., Zakaria O., Miyahara T., Xin W., Lin Z., Aoki K., Kasugai S., Decontamination of anodized implant surface with different modalities for peri‐implantitis treatment: lasers and mechanical debridement with citric acid, J. Periodontol. 87 (2016) 953-61.
DOI: 10.1902/jop.2016.150615
Google Scholar
[17]
Rasouli R., Barhoum A., Uludag H., A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance, Biomater. Sci. 6 (2018) 1312-38.
DOI: 10.1039/c8bm00021b
Google Scholar
[18]
Anbarzadeh E., Mohammadi B., Investigation of the Effects of Sandblasting, Acid Etching, and Anodizing Parameters in the SLA+ Anodizing on the Surface Treatment of Titanium Dental Implant Fixtures, Phys. Met. Metallogr. 29 (2023) 1-4.
DOI: 10.1134/s0031918x23600793
Google Scholar
[19]
Anbarzadeh E., Mohammadi B., Azadzaeim M., Effects of acid etching parameters on the surface of dental implant fixtures treated by proposed coupled SLA-anodizing process, J. Mater. Res. 38 (2023) 4951-66.
DOI: 10.1557/s43578-023-01205-4
Google Scholar