Evaluation of Corrosion Resistance of HA-TiO2/Chitosan Bilayer Coated Magnesium Alloy Based Cardiovascular Stents for Drug Delivery Applications

Article Preview

Abstract:

Development of drug eluting biodegradable cardiovascular stent materials offers a promising alternative to conventional bare metallic stents due to their excellent biocompatibility and ability to eliminate long-term complications associated with permanent implants. The study presents a novel drug-eluting bilayer coating comprising inner calcium phosphate (CaP), titanium dioxide (TiO₂) and outer DEX-loaded chitosan for magnesium alloy stents. The coating is engineered to enhance corrosion resistance, promote biocompatibility and provide controlled drug release to mitigate restenosis and inflammation. The synergistic properties of CaP-TiO₂ improve the structural stability of the coating, while the chitosan matrix ensures effective drug delivery. In-vitro corrosion measurements and drug release kinetics demonstrate the coating’s potential for dual-functionality as a biodegradable barrier and a therapeutic agent carrier respectively. The innovative approach highlights a significant step towards the development of biodegradable drug-eluting stents tailored for cardiovascular applications.

You might also be interested in these eBooks

Info:

Pages:

1-19

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Scafa Udriște, Alexandru, Adelina-Gabriela Niculescu, Alexandru Mihai Grumezescu, and Elisabeta Bădilă, Cardiovascular stents: a review of past, current, and emerging devices, Mater. 14 (2021) 2498. [2] Vishnu, Jithin, Geetha Manivasagam, Diego Mantovani, Anjaneyulu Udduttula, Melanie J. Coathup, Ketul C. Popat, Pei-Gen Ren, and K. G. Prashanth, Balloon expandable coronary stent materials: a systematic review focused on clinical success, In vitro models. 1 (2022) 51-175. [3] Song, Ying, Bingwei Li, Hao Chen, and Zhuyuan Yu., Research progress of absorbable stents, Int. J. Med. Sci. 21 (2024) 404-412. [4] Spadafora, Luigi, Rossella Quarta, Giovanni Martino, Letizia Romano, Francesco Greco, Antonio Curcio, Tommaso Gori, Carmen Spaccarotella, Ciro Indolfi, and Alberto Polimeni, From Mechanisms to Management: Tackling In-Stent Restenosis in the Drug-Eluting Stent Era, Curr. Cardiol. Rep. 27 (2025) 53. [5] Zhang, Jianbing, Jingyi Zhu, Baiping Sui, Ying Wang, and Bingxue Zhang, Effect of rapamycin-eluting stents on in-stent restenosis and early inflammatory response in coronary artery narrowing animal models, J. Cardiothorac. 20 (2025) 84. [6] Hassan, Sadia, Murtaza Najabat Ali, and Bakhtawar Ghafoor, Evolutionary perspective of drug eluting stents: from thick polymer to polymer free approach, J. Cardiothorac. Surg. 17 (2022) 65. [7] Udriște, Alexandru Scafa, Alexandra Cristina Burdușel, Adelina-Gabriela Niculescu, Marius Rădulescu, and Alexandru Mihai Grumezescu, Coatings for cardiovascular stents—an up-to-date review, Int. J. Mol. Sci. 25 (2024) 1078. [8] Hou, Ruixia, Leigang Wu, Jin Wang, Zhilu Yang, Qiufen Tu, Xingcai Zhang, and Nan Huang, Surface-degradable drug-eluting stent with anticoagulation, antiproliferation, and endothelialization functions, Biomolecules. 9 (2019) 69. [9] Bai, Chengyan, Xiangyi Feng, Liang Lan, Chao Zhou, and Haijun Zhang, Recent advances and perspectives in bioresorbable metal coronary drug-eluting stents, Biomed. Mater. 20 (2025) 032001. [10] Song, G., Zhao, H.Q., Liu, Q. and Fan, Z., A review on biodegradable biliary stents: materials and future trends, Bioact. Mater. 17 (2022) 488-495. [11] Haude, Michael, Juan F. Iglesias, Hector M. Garcia-Garcia, Dimitrios Barlagiannis, Sophie Degrauwe, Gebremedhin Melaku, Solomon Beyene, and Ron Waksman, A new resorbable magnesium scaffold (DREAMS 3G): 12-month vasomotion results from the BIOMAG-I first-in-human study, ESC. 20 (2024) e1118-e1120. [12] Chen, Jiaxuan, Fang Dong, and Sheng Liu., Design and Mechanical Performance Evaluation of WE43 Magnesium Alloy Biodegradable Stents via Finite Element Analysis, Metals. 14 (2024) 704. [13] Zhou, You, Aixue Zhang, Jibin Wu, Shu Guo, and Qiang Sun, Application and perspectives: Magnesium materials in bone regeneration, ACS Biomater. Sci. Eng. 10 (2024) 3514-3527. [14] Singh, Navdeep, Uma Batra, Kamal Kumar, Neeraj Ahuja, and Anil Mahapatro., Progress in bioactive surface coatings on biodegradable Mg alloys: A critical review towards clinical translation, Bioact. Mater. 19 (2023) 717-757. [15] Tong, P., Sheng, Y., Hou, R., Iqbal, M., Chen, L., & Li, J., Recent progress on coatings of biomedical magnesium alloy, Smart Mater. Med., vol. 3 (2022) 104-116. [16] Padmanabhan, Varun Prasath, Sivashanmugam Pugalmani, Sarath Chandra Veerla, S. M. Mubashera, and Ravichandran Kulandaivelu, An alternative approach in the synthesis of strontium-hydroxyapatite and strontium hydroxyapatite embedded in graphitic carbon nitride nanocomposites for potential tissue engineering applications, Diam. Relat. Mater. vol. 149 (2024) 111561. [17] Yang, Yanxia, Yuanzhi Wu, Yu Wei, Tian Zeng, Baocheng Cao, and Jun Liang, Preparation and characterization of hydroxyapatite coating on AZ31 magnesium alloy induced by carboxymethyl cellulose-dopamine, 14 (2021) 1849. [18] Yang, F., Chang, R. and Webster, T.J., Atomic layer deposition coating of TiO2 nano-thin films on magnesium-zinc alloys to enhance cytocompatibility for bioresorbable vascular stents, Int. J. Nanomed., 14 (2019) 9955-9970. [19] Junkar, Ita, Metka Benčina, Niharika Rawat, Rene Mihelič, Rihard Trebše, and Aleš Iglič, Synthesis of TiO2 nanostructures and their medical applications, In Oxides for Medical Applications, Woodhead Publishing, 2023, pp.107-146

Google Scholar

[30] Lee, Jung Ho, Seung Mi Baek, Gibum Lee, Seong-jong Kim, Hyoung Seop Kim, and Sei Kwang Hahn, Biocompatible magnesium implant double-coated with dexamethasone-loaded black phosphorus and poly (lactide-co-glycolide), ACS Appl. Bio. Mater. 3 (2020) 8879-8889. [31] Rahvar, M., AhmadiLakalayeh, G., Nazeri, N., Marouf, B.T., Shirzad, M., Najafi T. Shabankareh, A. and Ghanbari, H., Assessment of structural, biological and drug release properties of electro-sprayed poly lactic acid-dexamethasone coating for biomedical applications, Biomed. Eng. Lett. 11 (2021) 393-406. [32] Mukaida, N., Zachariae, C.C., Gusella, G.L. and Matsushima, K., Dexamethasone inhibits the induction of monocyte chemotactic-activating factor production by IL-1 or tumor necrosis factor, J. Immunol. 146 (1991) 1212-1215. [33] Garg, S and Serruys, P.W., Coronary stents: current status, J. Am. Coll. Cardiolo. 56 (2010) S1-S42. [34] Srinivasan, Arthanari, and Nallaiyan Rajendran, Surface characteristics, corrosion resistance and MG63 osteoblast-like cells attachment behaviour of nano SiO2–ZrO2 coated 316L stainless steel, RSC Adv. 5 (2015) 26007-26016. [35] Francis, A., Yang, Y. and Boccaccini, A.R., A new strategy for developing chitosan conversion coating on magnesium substrates for orthopedic implants, Appl. Surf. Sci. 466 (2019) 854-862. [36] Rodrigues, Lívia B., Helena F. Leite, Maria I. Yoshida, Juliana B. Saliba, Armando S. Cunha Junior, and André AG Faraco., In vitro release and characterization of chitosan films as dexamethasone carrier,  Int. J. Pharm. 368 (2009) 1-6. [37] Hanas, T., Kumar, T.S., Perumal, G. and Doble, M., Tailoring degradation of AZ31 alloy by surface pre-treatment and electrospun PCL fibrous coating, Mater. Sci. Eng. C. 65 (2016) 43-50. [38] Malekkhouyan, R., Van Renterghem, L., Bonnaud, L., Paint, Y., Gonon, M., Cornil, D. & Olivier, M. G., Effect of surface pretreatment on the production of LDH for post-treatment with benzoxazine resin, Surf. Coat. Tech. 479 (2024) 130538. [39] Saadati, Ahmad, Behnam Nourmohammadi Khiarak, Ayda Asaadi Zahraei, Aida Nourbakhsh, and Hurieh Mohammadzadeh, Electrochemical characterization of electrophoretically deposited hydroxyapatite/chitosan/graphene oxide composite coating on Mg substrate, Surf. interfaces. 25 (2021) 101290. [40] Al-Amin, M., Dey, S. C., Rashid, T. U., Ashaduzzaman, M., & Shamsuddin, S. M., Solar assisted photocatalytic degradation of reactive azo dyes in presence of anatase titanium dioxide, IJLRET. 2 (2016) 14-21. [41] Kozina, I., Krawiec, H., Starowicz, M., & Kawalec, M., Corrosion resistance of MgZn alloy covered by chitosan-based coatings, Int. J. Mol. Sci. 22 (2021) 8301. [42] Ghanem, S. N., M. I. Marzouk, M. E. Tawfik, and S. B. Eskander, Spectroscopic approaches for structural analysis of extracted chitosan generated from chitin deacetylated for escalated periods, BMC chem. 19 (2025) 214. [43] Kalaiyarasan, M., Pugalmani, S., & Rajendran, N., Fabrication of chitosan/silica hybrid coating on AZ31 Mg alloy for orthopaedic applications, J. Magnes. Alloy, vol. 11 (2023) 614-628. [44] Lakalayeh, G.A., Rahvar, M., Nazeri, N. and Ghanbari, H., Evaluation of drug-eluting nanoparticle coating on magnesium alloy for development of next generation bioabsorbable cardiovascular stents, Med. Eng. Phys. 108 (2022) 103878. [45] Song, Y., Han, E. H., Dong, K., Shan, D., Yim, C. D., & You, B. S., Effect of hydrogen on the corrosion behavior of the Mg–xZn alloys, J. Magnes. Alloy. 2 (2014) 208-213.

Google Scholar

[46] Xu, L., Liu, X., Sun, K., Fu, R., & Wang, G., Corrosion behavior in magnesium-based alloys for biomedical applications, Mater. 15 (2022) 2613. [47] Harrison, R., Maradze, D., Lyons, S., Zheng, Y., & Liu, Y., Corrosion of magnesium and magnesium–calcium alloy in biologically-simulated environment, Prog. Nat. Sci. Mat. Int. 24 (2014) 539-546. [48] Gaona-Tiburcio, C., Montoya-Rangel, M., Cabral-Miramontes, J. A., Estupiñan-López, F., Zambrano-Robledo, P., Orozco Cruz, R. & Almeraya-Calderón, F., Corrosion resistance of multilayer coatings deposited by PVD on inconel 718 using electrochemical impedance spectroscopy technique, Coatings. 10 (2020) 521. [49] Qi, Z., Zhao, Y., Ji, M., Wang, G., Ying, L., Wang, Z., & Krit, B., Preparation of chitosan/phosphate composite coating on Mg alloy (AZ31B) via one-step chemical conversion method, RCM. 2 (2023) 39-48. [50] Bahrampour, S., Bordbar-Khiabani, A., Siadati, M. H., Gasik, M., & Mozafari, M., Improving the inflammatory-associated corrosion behavior of magnesium alloys by Mn3O4 incorporated plasma electrolytic oxidation coatings, Chem. Eng. J.  483 (2024) 149016. [51] Aguilar-Ruiz, A. A., Dévora-Isiordia, G. E., Sánchez-Duarte, R. G., Villegas-Peralta, Y., Orozco-Carmona, V. M., & Álvarez-Sánchez, J., Chitosan-based sustainable coatings for corrosion inhibition of aluminum in seawater, Coatings., 13 (2023) 1615. [52] Dehghan-Chenar, S., Zare, H. R., & Mohammadpour, Z., Chitosan-ImH@ γ-CD: a pH-sensitive smart bio-coating to enhance the corrosion resistance of magnesium alloys in bio-implants, RSC adv.  14 (2024) 33301-33310. [53] Wei, L., & Gao, Z., Recent research advances on corrosion mechanism and protection, and novel coating materials of magnesium alloys: a review, RSC Adv. 13 (2023) 8427–8463. [54] Huang, Y., Venkatraman, S.S., Boey, F.Y., Lahti, E.M., Umashankar, P.R., Mohanty, M., Arumugam, S., Khanolkar, L. and Vaishnav, S., In vitro and in vivo performance of a dual drug-eluting stent (DDES), Biomater. 31 (2010) 4382-43. [55] Aslıer, Nesibe Gül Yüksel, Aylin Altınışık Tağaç, Serpil Mungan Durankaya, Meryem Çalışır, Nevin Ersoy, Günay Kırkım, Kadir Yurdakoç et al., Dexamethasone-loaded chitosan-based genipin-cross-linked hydrogel for prevention of cisplatin induced ototoxicity in Guinea pig model, Int. J. Pediatr. Otorhinolaryngol. 122 (2019) 60-69. [56] Zhang, J., Liu, Y., Luo, R., Chen, S., Li, X., Yuan, S., Wang, J. and Huang, N., In vitro hemocompatibility and cytocompatibility of dexamethasone-eluting PLGA stent coatings, Appl. Surf. Sci., vol. 328 (2015) 154-162. [57] Unagolla, J. M., & Jayasuriya, A. C., Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system, European Journal of Pharmaceutical Sciences. 114 (2018) 199-209. [58] Herdiana, Y., Wathoni, N., Shamsuddin, S., & Muchtaridi, M., Drug release study of the chitosan-based nanoparticles, Heliyon. 8 (2022) e08674.

Google Scholar