[1]
S. Ahmad, S. Munir, and N. Zeb, A review on the synthesis of bioinspired metal nanoparticles and their applications, Int. J. Nanomedicine. 14 (2009) 5087–5107.
Google Scholar
[2]
O. A. Alabrahim, S. Alwahibi, and H. M. E. El‑Said Azzazy, Green synthesis and biomedical applications of nanomaterials, Nanoscale Adv. 6 (2024) 910–924.
Google Scholar
[3]
Z. S. Al‑Kharousi, A. S. Mothershaw, and B. Nzeako, Antimicrobial Activity of Frankincense (Boswellia sacra) Oil and Smoke against Pathogenic and Airborne Microbes, Foods. 12 (2023) 3442.
DOI: 10.3390/foods12183442
Google Scholar
[4]
E. A. Kotb, R. A. El‑Shiekh, W. H. Abd‑Elsalam, et al., Protective potential of frankincense essential oil and its loaded solid lipid nanoparticles against UVB‑induced photo damage in rats via MAPK and PI3K/AKT signaling pathways; A promising anti‑aging therapy, PLoS One. 18 (2023) e0294067.
DOI: 10.1371/journal.pone.0294067
Google Scholar
[5]
S. A. Fahmy, N. K. Sedky, H. A. F. M. Hassan, N. M. Abdel‑Kader, N. K. Mahdy, M. U. Amin, E. Preis, and U. Bakowsky, Synergistic Enhancement of Carboplatin Efficacy through pH‑Sensitive Nanoparticles Formulated Using Naturally Derived Boswellia Extract for Colorectal Cancer Therapy, Pharmaceutics. 16 (2024) 1282.
DOI: 10.3390/pharmaceutics16101282
Google Scholar
[6]
S. N. H. Azmi, M. Al-Balushi, F. and Al-Siyabi, Characterization of date palm fiber-reinforced recycled polymer composites, J. King Saud Univ. Sci. 32 (2020) 2931–2938.
DOI: 10.1016/j.jksus.2020.07.015
Google Scholar
[7]
E. A. Kotb, R. A. El‑Shiekh, W. H. Abd‑Elsalam, N. S. E. D. El Sayed, N. El Tanbouly, and A. S. El Senousy, Protective potential of frankincense essential oil and its loaded solid lipid nanoparticles against UVB‑induced photo damage in rats via MAPK and PI3K/AKT signaling pathways; A promising anti‑aging therapy, PLoS One. 18 (2023) e0294067.
DOI: 10.1371/journal.pone.0294067
Google Scholar
[8]
S. Chen, J. R. Drehmel, and R. L. Penn, Comparing the Growth Mechanisms of Hydrothermally Synthesized ZnO Crystals in the Presence and Absence of Citrate Using Paired Experiments, ACS Omega. 5 (2020) 6069–6073.
Google Scholar
[9]
A. H. Farha, A. Alshoaibi, O. Saber, S. A. Mansour, Novel Magnetite (Fe₃O₄)‑Methylcellulose Nanocomposites Synthesized Using the Reverse Co‑Precipitation Approach, J. Compos. Sci. 8 (2024) 282.
DOI: 10.3390/jcs8070282
Google Scholar
[10]
M. Alipanah and H. Zareian, Advanced nanomedicine for targeted therapy, Nanomed. Nanotechnol. Biol. Med. 25 (2023) 212–220.
Google Scholar
[11]
O. A. Alabrahim, S. Alwahibi, and H. M. E. Azzazy, Nanotechnology-based biosensing platforms: current trends and future perspectives, Nanoscale Adv. 6(2024) 910–924.
Google Scholar
[12]
E. A. Kotb, R. A. El‑Shiekh, and W. H. Abd‑Elsalam, Novel antimicrobial agents from natural sources, PLOS ONE. 18 (2023) e0294067.
Google Scholar
[13]
H. M. E.-S. Azzazy et al., Smart nanocarriers for controlled drug delivery, ACS Omega. 8 (2023) 1017–1025.
Google Scholar
[14]
O. A. Alabrahim, S. Alwahibi, and H. M. E. Azzazy, Recent advances in nanomaterials for biomedical applications, Nanoscale Adv. 6 (2024) 910–924.
Google Scholar
[15]
Z. S. Al‑Kharousi, A. S. Mothershaw, and B. Nzeako, Evaluation of antimicrobial properties in traditional foods, Foods. 12 (2023) 3442.
DOI: 10.3390/foods12183442
Google Scholar
[16]
A. K. Giri, B. Jena, B. Biswal, A. K. Pradhan, M. Arakha, S. Acharya, and L. Acharya, Antimicrobial and cytotoxic properties of metal-based nanoparticles, Sci. Rep. 12 (2022) 8383.
DOI: 10.1038/s41598-022-12484-y
Google Scholar
[17]
A. Mohd Fahim, A. Shahzaib, N. Nishat, A. Jahan, T. A. Bhat, and A. Inam, Functionalized materials for environmental and biomedical applications, JCIS Open. 16 (2024) 100125.
DOI: 10.1016/j.jciso.2024.100125
Google Scholar