Comparative Evaluation of the Effects of Yttrium Stabilized Zirconia Nanoparticles (YSZrO2- NP) and Porcelain Particles on Property Enhancement of Polymethylmethacrylate (PMMA) Denture Composites

Article Preview

Abstract:

The durability and strength of acrylic dentures are crucial for patient satisfaction and oral health. However, denture failure rates remain a significant concern. Reinforcing acrylic dentures with nanoparticles such as zirconia improves the mechanical properties of PMMA dentures. This study examines the enhancement of mechanical and physical properties of heat-cured PMMA dentures reinforced with varying amounts (1, 3, 5, 7, and 9 wt.%) of YSZrO2-NP and porcelain particles. The components were fabricated with standard dimensions in a dental flask, compacted using a hydraulic press, and polymerized for 120 minutes in a thermos-stated water curing bath. The properties analyzed included flexural strength, hardness, wear resistance, microstructure, and biocompatibility. The Flexural strength increased significantly with YSZrO2-NP reinforcement (315% at 7 wt.%), whereas porcelain particles reinforcement showed a minimal increase (40% at 9 wt.%). Hardness slightly decreased for all YSZrO2-NP/PMMA compositions (51% at 9 wt.%), while porcelain reinforcement showed a slight increase across all amounts, reaching up to 11% at 9 wt.%. Wear resistance improved with all filler additions in the PMMA. SEM analysis revealed uniformly dispersed particles in the PMMA matrix for 1-5 wt. % porcelain particles and ZrO2NP composites. In contrast, 7-9 wt. % reinforcement showed non-uniform dispersion. Reinforcing PMMA with YSZrO2-NP and porcelain particles enhanced its mechanical and physical properties. Therefore, micro- and nanoparticles of ceramics are a viable option for improving the strength and rigidity of PMMA dentures.

You might also be interested in these eBooks

Info:

Pages:

21-41

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Pollington, R. Van Noort, An update of ceramics in dentistry, Int. J. Clin. Dent. 2 (2009) 283-307.

Google Scholar

[2] A. Alhotan, J. Yates, S. Zidan, J. Haider, N. Silikas, Flexural strength and hardness of filler-reinforced pmma targeted for denture base application, Materials (Basel). 14 (2021) 2659.

DOI: 10.3390/ma14102659

Google Scholar

[3] D. C. Jagger, A. Harrison, K. D. Jandt, The reinforcement of dentures, J. Oral Rehabil. 26 (1999) 185–194.

DOI: 10.1046/j.1365-2842.1999.00375.x

Google Scholar

[4] T. Nejatian, A. Johnson, R. Van Noort, Reinforcement of Denture Base Resin, AST. 49 (2006) 124–129.

Google Scholar

[5] G. Zappini, A. Kammann, W. Wachter, Comparison of fracture tests of denture base materials, J. Prosthet. Dent., 90 (2003) 578–585.

DOI: 10.1016/j.prosdent.2003.09.008

Google Scholar

[6] T. Kanie, K. Fujii, H. Arikawa, K. Inoue, Flexural properties and impact strength of denture base polymer reinforced with woven glass fibers, Dent. Mater. 16 (2000) 150–158.

DOI: 10.1016/s0109-5641(99)00097-4

Google Scholar

[7] H. Sasaki, I. Hamanaka, Y. Takahashi, T. Kawaguchi, Effect of long-term water immersion or thermal shock on mechanical properties of high-impact acrylic denture base resins, Dent. Mater. J. 35 (2016) 204–209.

DOI: 10.4012/dmj.2015-291

Google Scholar

[8] H. Agha, R. Flinton, T. Vaidyanathan, Optimization of Fracture Resistance and Stiffness of Heat-Polymerized High Impact Acrylic Resin with Localized E-Glass Fiber Force Reinforcement at Different Stress Points, J. Prosthodont. 25 (2016) 647–655.

DOI: 10.1111/jopr.12477

Google Scholar

[9] A. L. S. Borges, A. M. de O. Dal Piva, S. E. Moecke, R. C. de Morais, J. P. M. Tribst, Polymerization shrinkage, hygroscopic expansion, elastic modulus and degree of conversion of different composites for dental application, J. Compos. Sci. 5 (2021) 1–18.

DOI: 10.3390/jcs5120322

Google Scholar

[10] D. N. Bosânceanu, A. Beldiman, R. E. Baciu, M. Bolat, D. G. Bosânceanu, N. C. Forna, Complete Dentures Fractures – Causes and Incidence, Romanian Journal of Oral Rehab. 9 (2017) 54-59.

Google Scholar

[11] X. Y. Zhang, X. J. Zhang, Z. L. Huang, B. S. Zhu, R. R. Chen Rong-Rong, Hybrid effects of zirconia nanoparticles with aluminum borate whiskers on mechanical properties of denture base resin PMMA, Dent. Mater. J. 33 (2014) 141–146.

DOI: 10.4012/dmj.2013-054

Google Scholar

[12] S. Zidan, N. Silikas, J. Haider, A. Alhotan, J. Jahantigh, J. Yates, Evaluation of equivalent flexural strength for complete removable dentures made of zirconia-impregnated PMMA nanocomposites, Materials (Basel). 13 (2020) 2580.

DOI: 10.3390/ma13112580

Google Scholar

[13] A. Yang, D. Zhao, Y. Wu, C. Xu, Effect of polyimide addition on mechanical properties of PMMA-based denture material, Dent. Mater. J. 36 (2017) 560–565.

DOI: 10.4012/dmj.2016-261

Google Scholar

[14] H. T. Elhmali, V. Radojevic, A. Stajcic, M. Petrovic, D. B. Stojanovic, B. Vlahovic, I. Stajcic, Denture base poly(methyl methacrylate) reinforced with SrTiO3/Y2O3: Structural, morphological and mechanical analysis, Polym. Compos. (2025) 1–10.

DOI: 10.1002/pc.29523

Google Scholar

[15] J. John, S. A. Gangadhar, I. Shah, Flexural strength of heat-polymerized polymethyl methacrylate denture resin reinforced with glass, aramid, or nylon fibers, J. Prosthet. Dent. 86 (2001) 424–427.

DOI: 10.1067/mpr.2001.118564

Google Scholar

[16] M. Hassan, M. Asghar, S. U. Din, M. S. Zafar, Thermoset polymethacrylate-based materials for dental applications. Materials for Biomedical Engineering Elsevier Inc., (2019) 273-308.

DOI: 10.1016/b978-0-12-816874-5.00008-6

Google Scholar

[17] M. S. Zafar, Wear behavior of various dental restorative materials, Materials Technology. 34 (2019) 25–31.

DOI: 10.1080/10667857.2018.1462978

Google Scholar

[18] M. S. Zafar, K. H. Al-Samadani, Potential use of natural silk for bio-dental applications, J. Taibah Univ. Med. Sci. 9 (2014) 171–177.

DOI: 10.1016/j.jtumed.2014.01.003

Google Scholar

[19] A. M. Díez-Pascual, PMMA-Based Nanocomposites for Odontology Applications: A State-of-the-Art, Int. J. Mol. Sci. 23 (2022) 10288.

DOI: 10.3390/ijms231810288

Google Scholar

[20] N. Ilie, T. J. Hilton, S. D. Heintze, R. Hickel, D. C. Watts, N. Silikas, J. W. Stansbury, M. Cadenaro, J. L. Ferracane, Academy of Dental Materials guidance-Resin composites : Part I — Mechanical properties, 33 (2017) 880-894.

DOI: 10.1016/j.dental.2017.04.013

Google Scholar

[21] S. H. Kim, D. C. Watts, The effect of reinforcement with woven E-glass fibers on the impact strength of complete dentures fabricated with high-impact acrylic resin, J. Prosthet. Dent. 91 (2004) 274–280.

DOI: 10.1016/j.prosdent.2003.12.023

Google Scholar

[22] S. H. Yu, Y. Lee, S. Oh, H. W. Cho, Y. Oda, J. M. Bae, Reinforcing effects of different fibers on denture base resin based on the fiber type, concentration, and combination, Dent. Mater. J., 31 (2012) 1039–1046.

DOI: 10.4012/dmj.2012-020

Google Scholar

[23] T. Nejatian, N. Nathwani, L. Taylor, F. Sefat, Denture base composites: Effect of surface modified nano-and micro-particulates on mechanical properties of polymethyl methacrylate, Materials (Basel). 13 (2020) 307.

DOI: 10.3390/ma13020307

Google Scholar

[24] G. Ergun, Z. Sahin, A. S. Ataol, The effects of adding various ratios of zirconium oxide nanoparticles to poly(methyl methacrylate) on physical and mechanical properties, J. Oral Sci. 60 (2018) 304–315.

DOI: 10.2334/josnusd.17-0206

Google Scholar

[25] G. Nazirkar, S. Bhanushali, S. Singh, B. Pattanaik, N. Raj, Effect of Anatase Titanium Dioxide Nanoparticles on the Flexural Strength of Heat Cured Poly Methyl Methacrylate Resins: An In-Vitro Study, J. Indian Prosthodont. Soc. 14 (2014) 144–149.

DOI: 10.1007/s13191-014-0385-8

Google Scholar

[26] E. Kul, L. İ. Aladağ, R. Yesildal, "Evaluation of thermal conductivity and flexural strength properties of poly(methyl methacrylate) denture base material reinforced with different fillers, J. Prosthet. Dent. 116 (2016) 803–810.

DOI: 10.1016/j.prosdent.2016.03.006

Google Scholar

[27] M. M. Gad, S. M. Fouda, F. A. Al-Harbi, R. Näpänkangas, A. Raustia, PMMA denture base material enhancement: A review of fiber, filler, and nanofiller addition, Int. J. Nanomedicine, 12 (2017) 3801–3812.

DOI: 10.2147/ijn.s130722

Google Scholar

[28] E. Alwan Erhim, M. A. Abbood, H. T. Halbos, Assessment of surface hardness and impact strength of denture base resins reinforced with silver-titanium dioxide and silver-zirconium dioxide nanoparticles: In vitro study, Open Eng. 14 (2024).

DOI: 10.1515/eng-2024-0064

Google Scholar

[29] S. Lamnini, D. Pugliese, F. Baino, Zirconia-Based Ceramics Reinforced by Carbon Nanotubes: A Review with Emphasis on Mechanical Properties, Ceramics, 6 (2024) 1705–1734.

DOI: 10.3390/ceramics6030105

Google Scholar

[30] G. Uzun, N. Hersek, T. Tinçer, Effect of five woven fiber reinforcements on the impact and transverse strength of a denture base resin. J. Prosthet. Dent. 81 (1999) 616–620.

DOI: 10.1016/s0022-3913(99)70218-0

Google Scholar

[31] A. Fouly, W. M. Daoush, H. I. Elqady, H. S. Abdo, Fabrication of PMMA nanocomposite biomaterials reinforced by cellulose nanocrystals extracted from rice husk for dental applications, Friction, 12 (2024) 2808–2825.

DOI: 10.1007/s40544-024-0940-1

Google Scholar

[32] U. Ali, K. J. B. A. Karim, N. A. Buang, A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA), Polym. Rev. 55 (2015) 678–705.

DOI: 10.1080/15583724.2015.1031377

Google Scholar

[33] R. S. Jessy, M. H. Ibrahim, Biodegradability and Biocompatibility of Polymers with Emphasis on Bone Scaffolding: a Brief Review, Int. J. Sci. Res. Publ. 4 (2014) 7–9.

Google Scholar

[34] B. Ali Sabri, M. Satgunam, N. M. Abreeza, A. N. Abed, A review on enhancements of PMMA Denture Base Material with Different Nano-Fillers, Cogent Eng. 8 (2021) 1875968.

DOI: 10.1080/23311916.2021.1875968

Google Scholar

[35] Z. Sayeed, M. T. Padela, M. M. El-Othmani, K. J. Saleh, Acrylic bone cements for joint replacement, Biomedical Composites (Second Edi.), Woodhead Publishing Series in Biomaterials (2017) 199-214.

DOI: 10.1016/b978-0-08-100752-5.00009-3

Google Scholar

[36] E. E. Totu, A. C. Nechifor, G. Nechifor, H. Y. Aboul-Enein, C. M. Cristache, Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing − the fututre in dental care for elderly edentulous patients?, J. Dent. 59 (2017) 68-77.

DOI: 10.1016/j.jdent.2017.02.012

Google Scholar

[37] E. Gürsoy, H. Yilmaz, Nanoparticles and Their Application in Prosthetic Dentistry, Clinical and Experimental Health Sciences. 13 (2023) 685–695.

DOI: 10.33808/clinexphealthsci.1144865

Google Scholar

[38] T. Wang, J. K. H. Tsoi, J. P. Matinlinna, A novel zirconia fibre-reinforced resin composite for dental use, J. Mech. Behav. Biomed. Mater., 53 (2016) 151–160.

DOI: 10.1016/j.jmbbm.2015.08.018

Google Scholar

[39] N. Kawai, J. Lin, H. Youmaru, A. Shinya, A. Shinya, Effects of three luting agents and cyclic impact loading on shear bond strengths to zirconia with tribochemical treatment, J. Dent. Sci., 7 (2012) 118–124.

DOI: 10.1016/j.jds.2012.03.007

Google Scholar

[40] M. M. Gad, A. Rahoma, A. M. Al-Thobity, A. S. ArRejaie, Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases, Int. J. Nanomedicine, 11 (2016) 5633–5643.

DOI: 10.2147/ijn.s120054

Google Scholar

[41] M. M. Gad, R. Abualsaud, A. M. Al-Thobity, N. Z. Baba, F. A. Al-Harbi, Influence of Addition of Different Nanoparticles on the Surface Properties of Poly(methylmethacrylate) Denture Base Material, J. Prosthodont. 29 (2020) 422–428.

DOI: 10.1111/jopr.13168

Google Scholar

[42] I. N. Safi, Evaluation the Effect of Nano - Fillers ( TiO2 , Al2O3, SiO2) Addition on Glass Transition Temperature, E - Moudulus and Coefficient of Thermal Expansion of Acrylic Denture Base Material, J. Baghdad Coll. Dent., 26 (2014) 37–41.

DOI: 10.12816/0015162

Google Scholar

[43] M. Gad, A. S. ArRejaie, M. S. Abdel-Halim, A. Rahoma, The Reinforcement Effect of Nano-Zirconia on the Transverse Strength of Repaired Acrylic Denture Base, Int. J. Dent. 2016 (2016) 7094056.

DOI: 10.1155/2016/7094056

Google Scholar

[44] D. Barapatre, S. Somkuwar, S. K. Mishra, R. Chowdhary, The effects of reinforcement with nanoparticles of polyetheretherketone, zirconium oxide and its mixture on flexural strength of PMMA resin, 56 (2022) 61–66.

DOI: 10.26650/eor.2022904564

Google Scholar

[45] G. A. S. Kazi, R. Yamagiwa, Cytotoxicity and biocompatibility of high mol% yttria containing zirconia, Restor. Dent. Endod., 45 (2025) 1–11.

DOI: 10.5395/rde.2020.45.e52

Google Scholar

[46] D. Garzo, Review of Advanced Coatings for Metallic Implants : A Study / Proposal on Yttria-Stabilized Zirconia and Silver-Doped Hydroxyapatite, JOM 77 (2025) 8–10.

DOI: 10.1007/s11837-025-07345-8

Google Scholar

[47] H. W. Park, E. Cho, Y. Zou, S. H. Lee, J. R. Choi, S-B Lee, K. Chung, S. H. Kwon, J. Kim, H. J. Lee, Synthesis of Yttria-Stabilized Zirconia Nanospheres from Zirconium-Based Metal–Organic Frameworks and the Dielectric Properties, Nanomaterials, 13 (2023).

DOI: 10.3390/nano13010028

Google Scholar

[48] T. Maridurai, D. Balaji, S. Sagadevan, Synthesis and characterization of yttrium stabilized zirconia nanoparticles, Mater. Res. 19 (2016) 812–816.

DOI: 10.1590/1980-5373-mr-2016-0196

Google Scholar

[49] M. Yarahmadi, J. J. Roa, J. Zhang, L. Cabezas, L. Ortiz-Membrado, L. Llanes, G. Fargas, Micromechanical properties of Yttria-doped zirconia ceramics manufactured by direct ink writing, J. Eur. Ceram. Soc., 43 (2023) 2884–2893.

DOI: 10.1016/j.jeurceramsoc.2022.10.067

Google Scholar

[50] F. Hamedi-Rad, T. Ghaffari, F. Rezaii, A. Ramazani, Effect of nanosilver on thermal and mechanical properties of acrylic base complete dentures, Journal of Dentistry. 11 (2014) 495.

Google Scholar

[51] S. Fu, Z. Sun, P. Huang, Y. Li, N. Hu, Some basic aspects of polymer nanocomposites: A critical review, Nano Mater. Sci., 11 (2019) 2–30.

DOI: 10.1016/j.nanoms.2019.02.006

Google Scholar

[52] N. V. Asar, H. Albayrak, T. Korkmaz, I. Turkyilmaz, Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins, J. Adv. Prosthodont. 5 (2013) 241–247.

DOI: 10.4047/jap.2013.5.3.241

Google Scholar

[53] A. Alhavaz, M. Rezaei Dastjerdi, A. Ghasemi, A. Ghasemi, A. Alizadeh Sahraei, Effect of untreated zirconium oxide nanofiller on the flexural strength and surface hardness of autopolymerized interim fixed restoration resins, J. Esthet. Restor. Dent. 29 (2017) 264–269.

DOI: 10.1111/jerd.12300

Google Scholar

[54] G. Guo, Y. Fan, J. F. Zhang, J. L. Hagan, X. Xu, Novel dental composites reinforced with zirconia-silica ceramic nanofibers, Dent. Mater. 28 (2012) 360–368.

DOI: 10.1016/j.dental.2011.11.006

Google Scholar

[55] S. Zidan, N. Silikas, J. Haider, A. Alhotan, J. Jahantigh, J. Yates, Evaluation of equivalent flexural strength for complete removable dentures made of zirconia-impregnated PMMA nanocomposites, Materials (Basel). 13 (2020) 2580.

DOI: 10.3390/ma13112580

Google Scholar

[56] S. Zidan, N. Silikas, S. Al-Nasrawi, J. Haider, A. Alshabib, A. Alshame, J. Yates, Chemical characterisation of silanised zirconia nanoparticles and their effects on the properties of pmma-zirconia nanocomposites, Materials (Basel). 14 (2021) 1–16.

DOI: 10.3390/ma14123212

Google Scholar

[57] A. Borș, M. Szekely, Z. B. Veres, J. Corneschi, R. Ciocoiu, A. Antoniac, C. I. Enachescu, Characterization of Innovative Dental Resin Reinforced With Zirconia Nanoparticles Obtained By 3D Printing, UPB Sci. Bull. B Chem. Mater. Sci., 86 (2024) 289-299.

Google Scholar

[58] H. F. Majeed, T. I. Hamad, Assessment of thermal and flexural properties of 3D-printed denture base after addition of YSZ nanoparticles, 2025.

DOI: 10.1177/26349833251334664

Google Scholar

[59] W. Frąckiewicz, M. Królikowski, K. Kwiatkowski, E. Sobolewska, P. Szymlet, M. Tomasik, Comparison of Dental Zirconium Oxide Ceramics Produced Using Additive and Removal Technology for Prosthodontics and Restorative Dentistry—Strength and Surface Tests: An In Vitro Study, Materials (Basel). 17 (2024) 168.

DOI: 10.3390/ma17010168

Google Scholar

[60] Information on https://blog.iti.org/clinical-insights/ceramic-materials-in-implant-dentistry-an-overview/.

Google Scholar

[61] C. B. Mohsen Mhadhbi, F. Khlissa, C. Bouzidi, Recent Advances in Ceramic Materials for Dentistry, in Advanced Ceramic Materials, Ed. Mohsen Mhadhbi (2021).

DOI: 10.5772/intechopen.96890

Google Scholar

[62] K. Surana, G. Rengasamy, V. P. Veeraraghavan, H. S. Kasi Rajan, Enhancement of Mechanical Properties and Hydrophilicity of PMMA Using Varying Concentrations of ZrO2 Nanoparticles for Dental Applications, J. Int. Oral Heal. 17 (2025) 57–63.

DOI: 10.4103/jioh.jioh_223_24

Google Scholar

[63] Emad Azmy, Mohamed Reda Zaki Al-kholy, Ahmad M. Al-Thobity, Mohammed M. Gad, Mohammed Ahmed Helal, Comparative Effect of Incorporation of ZrO2, TiO2, and SiO2 Nanoparticles on the Strength and Surface Properties of PMMA Denture Base Material: An In Vitro Study, Int. J. Biomater. (2022) 5856545.

DOI: 10.1155/2022/5856545

Google Scholar

[64] W. A. Hussain, F. S. Hashim, The Effect of Additives on Denture Base Resin Properties, Al-Nahrain Journal of Science. 20 (2017) 44–50.

Google Scholar

[65] A. Alhotan, J. Yates, S. Zidan, J. Haider, N. Silikas, Flexural strength and hardness of filler-reinforced pmma targeted for denture base application, Materials (Basel). 14 (2021) 1–14.

DOI: 10.3390/ma14102659

Google Scholar

[66] M. Aboshama, A. Sayed, A. Elhagali, Effect of Different Nano-Fillers Addition on The Mechanical Properties of Heat-Polymerized Acrylic Resin, Al-Azhar Assiut Dent. J. 5 (2022) 141–148.

DOI: 10.21608/aadj.2022.267266

Google Scholar

[67] V. Asopa, S. Suresh, M. Khandelwal, V. Sharma, S. S. Asopa, L. S. Kaira, A comparative evaluation of properties of zirconia reinforced high impact acrylic resin with that of high impact acrylic resin, Saudi J. Dent. Res. 6 (2015) 146–151.

DOI: 10.1016/j.sjdr.2015.02.003

Google Scholar

[68] N. Ayad, M. Badawi, A. Fatah, Effect of reinforcement of high-impact acrylic resin with zirconia on some physical and mechanical properties, Archives of Oral Research. 4 (2008) 145–151.

Google Scholar

[69] R. Lilda G., P. L. Rupesh, U. Pympallil, B. S. Salagundi, N. T. Pallavi, V. Poonacha, A Comparative Evaluation of the Impact and Flexural Strengths of High Impact Acrylic Resin Reinforced With Silaned Zirconium Dioxide and Titanium Dioxide Nanoparticles and Its Hybrid Combination - An In-vitro Study, Int. J. Adv. Res. 8 (2020) 781–791.

DOI: 10.21474/ijar01/10509

Google Scholar

[70] H. Cured, A. Resin, The Reinforcement Effect of Nano ZrO2 on the Flexural and Impact strength of microwaved denture composites, Al-Azhar. (2023) 1–10.

DOI: 10.58675/2974-4164.1457

Google Scholar