[1]
R. J Sadleir, A. Argibay. Modeling Skull Electrical Properties. Ann. Biomed. Eng., 2007, 35 (10), 1699-1712.
DOI: 10.1007/s10439-007-9343-5
Google Scholar
[2]
N. Lynnerup, J. G Astrup, B. Sejrsen. Thickness of the human cranial diploe in relation to age, sex and general body build. Head Face Med., 2005, Dec 20, 1-13.
DOI: 10.1186/1746-160x-1-13
Google Scholar
[3]
W. Sun, P. Lal. Recent Development on Computer-Aided Tissue Engineering - A Review. J. Comput. Methods Programs Biomed., 2002. 67 (2), 85-103.
DOI: 10.1016/s0169-2607(01)00116-x
Google Scholar
[4]
R. Lanza, R. Langer, J. Vacanti. Principles of Tissue Engineering, Academic Press. (1997).
Google Scholar
[5]
K. G Marra, P. G Campbell, P. A DiMilla, P. N Kumta, M. P Mooney, J. W Szem, L . E Weiss, Novel Three Dimensional Biodegradable Scaffolds for Bone Tissue Engineering. MRS Proceedings, Materials Research Society Fall Meeting, (1998).
DOI: 10.1557/proc-550-155
Google Scholar
[6]
K. Gomi, J. E Davies. Guided bone tissue elaboration by osteogenic cells in vitro. J. Biomed. Mater. Res., 1993. 27 (4), 429-431.
DOI: 10.1002/jbm.820270403
Google Scholar
[7]
H. K Park, J. B Lee, F. G Diaz, M. Dujovny. Biomechanical Simulation for 3 layer Calvarial Prosthesis. Engineering in Medicine and Biology, Proceedings. 2002, October 23-26, 2515-6.
Google Scholar
[8]
B. San Miguel, R. Kriauciunas, S. Tosatti, M. Ehrbar, C. Ghayor, M. Textor, F. E Weber. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds. J. Biomed Mater Res A., 2010, 94 (4), 1023-33.
DOI: 10.1002/jbm.a.32773
Google Scholar
[9]
L. L Hench. The story of bioglass. J. Mater Sci Mater Med., 2006, 17 (11), 967-978.
DOI: 10.1007/s10856-006-0432-z
Google Scholar
[10]
L. L Hench, J. M Polak. Third generation biomedical materials. Science, 2002, 295, 1014-7.
Google Scholar
[11]
E. J Schepers, P Ducheyne, L. Barbier, S. Schepers. Bioactive glass particles of narrow size range: A new material for the repair of bony defects. Implant Dentistry 1993, 2 (3), 151-6.
DOI: 10.1097/00008505-199309000-00002
Google Scholar
[12]
J. Wilson, S. Low, A. Fetner, L. L Hench. Bioactive materials for periodontal treatment: A comparative study. Biomaterials and Clinical Applications, A. Pizzoferrato, P. G Marchetti, A. Ravaglioli, A.J. C Lee (eds. ), Elsevier Science, Amsterdam, 1987, 223-8.
Google Scholar
[13]
B. Oguntebi, A. Clarke, J. Wilson. Pulp capping with Bioglass and autologous demineralized dentin in miniature swine. J. Dent. Res., 1993, 72 (2), 484-9.
DOI: 10.1177/00220345930720020301
Google Scholar
[14]
H. R Stanley, M. B Hall, F. Colaizzi, A. E Clark. Residual alveolar ridge maintenance with a new endosseous implant material. J. Prosth. Dent., 1987, 58 (5), 607-13.
DOI: 10.1016/0022-3913(87)90393-3
Google Scholar
[15]
D. L Wheeler, K. E Stokes, H. M Park, J. O Hollinger. Evaluation of particulate Bioglass in a rabbit radius ostectomy model. J. Biomed. Mater. Res., 1997, 35(2), 249-54.
DOI: 10.1002/(sici)1097-4636(199705)35:2<249::aid-jbm12>3.0.co;2-c
Google Scholar
[16]
J. Wilson, D, Nolletti, Bonding of soft tissues to Bioglass. in Handbook of Bioactive Ceramics, T. Yamamuro, L. L Hench, J. Wilson (eds. ), CRC Press, Boca Raton, FL, 1990, 283-302.
DOI: 10.1002/jbm.820250709
Google Scholar
[17]
J. Wilson, L. T Yu, B. S Beale. Bone augmentation using Bioglass particulates in dogs: Pilot study. in Bioceramics, 1992, 5, 139-146.
Google Scholar
[18]
E. Schepers, M. de Clercq, P. Ducheyne, R. Kempeneers. Bioactive glass particulate material as a filler for bone lesions. J. Oral Rehabil., 1991, 18 (5), 439-452.
DOI: 10.1111/j.1365-2842.1991.tb01689.x
Google Scholar
[19]
M. Spagnuolo, L. Liu. Fabrication and Degradation of Electrospun Scaffolds from L-tyrosine Based Polyurethane Blends for Tissue Engineering Applications. J. Nanotechnology, 2012, 1-11.
DOI: 10.5402/2012/627420
Google Scholar
[20]
C. D Chin, K. Khanna, S. K Sia. A microfabricated porous collagen-based scaffold as prototype for skin substitutes. Biomed Microdevices, 2008, 10 (3), 459-67.
DOI: 10.1007/s10544-007-9155-2
Google Scholar
[21]
S. Kirubanandan, P. K Sehgal. Regeneration of Soft Tissue using Porous Bovine Collagen Scaffold. J. Optoelectronics and Biomedical Materials, 2010, 2 (3), 141-9.
Google Scholar
[22]
C. E Holy, C. Cheng, J. E Davies, M. S Shoichet. Optimizing the sterilization of PLGA scaffolds for use in tissue engineering. Biomaterials, 2001, 22, 25-31.
DOI: 10.1016/s0142-9612(00)00136-8
Google Scholar
[23]
C. Garcia, S. Ceré, A. Durán. Bioactive coatings prepared by sol-gel on stainless steel. J Non Cryst. Solids, 2004, 348, 218-24.
DOI: 10.1016/j.jnoncrysol.2004.08.172
Google Scholar
[24]
M. Mozafari, M. Rabiee, M. Azami, S. Maleknia. Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds. Applied Surface Science, 2010, 257 (5), 1740-49.
DOI: 10.1016/j.apsusc.2010.09.008
Google Scholar
[25]
M. Mozafari, F. Moztarzadeh, M. Rabiee, M. Azami, S. Maleknia, M. Tahriri, Z. Moztarzadeh, N. Nezafati. Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceramics International, 2010, 36 (8), 2431-9.
DOI: 10.1016/j.ceramint.2010.07.010
Google Scholar
[26]
N. D Doiphode, T. Huang, M. C Leu, M. N Rahaman, D. E Day. Freeze extrusion fabrication of 13-93 bioactive glass scaffolds for bone repair. J Mater Sci Mater Med., 2011, 22 (3), 515-23.
DOI: 10.1007/s10856-011-4236-4
Google Scholar
[27]
W. Sun, P. Lal. Recent Development on Computer-Aided Tissue Engineering - A Review. J. Comput. Methods Programs Biomed., 2002, 67 (2), 85-103.
DOI: 10.1016/s0169-2607(01)00116-x
Google Scholar
[28]
B. Starly, J. Nam, W. Lau, W. Sun. Layered Composite Model for Design and Fabrication of Bone Replacement. Proc. of 13th Solid Freeform Fabrication Symposium, Austin, TX, 5-8 August 2002. p.24.
Google Scholar
[29]
W. Sun. BioCAD in tissue science and engineering. 11th IEEE International Conference on Computer Aided Design and Computer Graphics, 2009. 43-44.
DOI: 10.1109/cadcg.2009.5246807
Google Scholar
[30]
W. Sun, B. Starly, J. Nam, A. Darling. Bio-CAD modeling and its applications in computer-aided tissue engineering. Computer-Aided Design, 2005, 37, 1097-1114.
DOI: 10.1016/j.cad.2005.02.002
Google Scholar
[31]
R. Sulaiman, L. W Kit, A.Y. M Kassim, H. A Hamid. Modelling of human anatomy in 3-D from dicom medical images into computer aided design. Proceedings International Conference on Electrical Engineering and Informatics, June (2007).
Google Scholar
[32]
J. Skrzat. Modelling the calvarium diploe. Folia Morphol (Warsz), 2006, 65 (2), 132-5.
Google Scholar
[33]
M. H Fathi, V. Mortzavi, A. Doostmohammadi. Bioactive Glass Nanopowder for theTreatment of Oral Bone Defects. J. Dentistry, 2007, 4 (3), 115-22.
Google Scholar
[34]
J. M Gomez-Vega, E. Saiz, A. P Tomsia, G. W Marshall, S. J Marshall. Bioactive glass coatings with hydroxyapatite and Bioglass particles on Ti-based implants. 1-Processing. Biomaterials, 2000, 21 (2), 105-11.
DOI: 10.1016/s0142-9612(99)00131-3
Google Scholar
[35]
T. Waltimo, T. J Brunner, M. Vollenweider, W. J Stark, M. Zehnder. Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res, 2007, 86 (8), 754-7.
DOI: 10.1177/154405910708600813
Google Scholar
[36]
J. Román, S. Padilla, M. Vallet-Regi. Sol-Gel Glasses as Precursors of Bioactive Glass Ceramics. Chem. Mater., 2003, 15 (3), 798-806.
DOI: 10.1021/cm021325c
Google Scholar
[37]
Z-H Zhou, J-M Ruan, Z-C Zhou, X-J Shen. Bioactivity of bioresorbable composite based on bioactive glass and poly-L-lactide. Transactions of Nonferrous Metals Society of China, 2007, 17 (2), 394-9.
DOI: 10.1016/s1003-6326(07)60105-8
Google Scholar
[38]
H. S Costa, M. F Rocha, G. I Andrade, E. F Barbosa-Stancioli, M. M Pereira, R. L Orefice, W. L Vasconcelos, H. S Mansur. Sol-gel derived composite from bioactive glass-polyvinyl alcohol. J. Mater Sci., 2008, 43 (2), 494-502.
DOI: 10.1007/s10853-007-1875-4
Google Scholar
[39]
A. Maciel, R. Boulic, D. Thalmann. Deformable tissue paramererized by properties of real biological tissue. Conference Paper, Springer Science Business Media, 2003, 74-87.
DOI: 10.1007/3-540-45015-7_8
Google Scholar
[40]
V. Karageorgiou, D. Kaplan. Porosity of 3D Biomaterial Scaffolds and Osteogenesis. Biomaterials, 2005, 26 (27), 5474-5491.
DOI: 10.1016/j.biomaterials.2005.02.002
Google Scholar
[41]
T. M O'Shea, X. Miao. Preparation and characterisation of plga-coated porous bioactive glass-ceramic scaffolds for subchondral bone tissue engineering. Proceedings of 9th International Symposium on Ceramic Materials and Components for Energy and Environmental Applications, November (2008).
DOI: 10.1002/9780470640845.ch73
Google Scholar
[42]
K. C Kolan, M. C Leu, G. E Hilmas, R. F Brown, M. Velez. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Biofabrication, 2011, 3 (2): 025004. Epub June (2011).
DOI: 10.1088/1758-5082/3/2/025004
Google Scholar
[43]
B. San Miguel, R. Kriauciunas, S. Tosatti, M. Ehrbar, C. Ghayor, M. Textor, F. E Weber. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds. J. Biomed. Mater. Res. A, 2010, 94A (4), 1023-35.
DOI: 10.1002/jbm.a.32773
Google Scholar
[44]
J-L Milan, J. A Planell, D. Lacroix. Simulation of bone tissue formation within a porous scaffold under dynamic compression. Biomech Model Mechanobiol., 2010, 9 (5), 583-96.
DOI: 10.1007/s10237-010-0199-5
Google Scholar
[45]
M. Azami, F. Moztarzadeh, M. Tahriri. Preparation, characterizationand mechanical properties of controlled porous gelatin/hydroxy apatite nanocomposite through layer solvent casting combined with freeze-drying and lamination techniques. J. Porous Mater., 2010, 17 (3), 313-20.
DOI: 10.1007/s10934-009-9294-3
Google Scholar
[46]
F. Hafezi, F. Hosseinnejad, A. A Fooladi, S. Mohit Mafi, A. Amiri, M. R Nourani. Transplantation of nano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna. J Mater Sci Mater Med, 2012 July. DOI 10. 1007/s10856-012-4722-3.
DOI: 10.1007/s10856-012-4722-3
Google Scholar