Modelling and Tissue Engineering of Three Layers of Calvarial Bone as a Biomimetic Scaffold

Article Preview

Abstract:

In this Study, a New Zealand Rabbit Parietal Bone Was Cross-Sectioned, and Parameters such as Entire Thickness and the Thicknesses of the Compact and Spongy Tables Were Morphometrically Measured by Imagej Software. the Pore Size of the Cancellous Table Was Also Analysed, and a Calvarial Bone Model Was Created. Based upon a Natural Model for Bone Repair, a Nano-Structured Scaffold Was Designed Using Bioglass and Gelatin (BG) as its Main Components. the Scaffold Was Prepared Using Layer Solvent Casting Combined with Freeze-Drying, Layering Techniques, and other Commonly Used Techniques. the Fabricated BG Scaffolds Were Made with Different Percentages of Nanoparticles, and the 10% and 30% Constructions Were Found to Be Respectively Similar to Compact and Spongy Bone. we Fabricated Three Lamellar Scaffolds with Two Compact Layers on the outside and One Spongy Layer in the Middle to Mimic the Composition and Structure of Natural Bone. the Chemical, Physical, and Biological Tests (including Cell Seeding on Scaffold and MTT Assay) that Evaluated this Scaffold Examined its Capacity to Promote Bone Repair. Fabricated Scaffolds Implanted in Rabbit Calvaria and Evaluated the Bone Repair by X-Ray. this Mimetic BG Scaffold Could Be an Excellent Candidate for a Synthetic Calvarial Bone Graft.

You might also be interested in these eBooks

Info:

Pages:

37-53

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. J Sadleir, A. Argibay. Modeling Skull Electrical Properties. Ann. Biomed. Eng., 2007, 35 (10), 1699-1712.

DOI: 10.1007/s10439-007-9343-5

Google Scholar

[2] N. Lynnerup, J. G Astrup, B. Sejrsen. Thickness of the human cranial diploe in relation to age, sex and general body build. Head Face Med., 2005, Dec 20, 1-13.

DOI: 10.1186/1746-160x-1-13

Google Scholar

[3] W. Sun, P. Lal. Recent Development on Computer-Aided Tissue Engineering - A Review. J. Comput. Methods Programs Biomed., 2002. 67 (2), 85-103.

DOI: 10.1016/s0169-2607(01)00116-x

Google Scholar

[4] R. Lanza, R. Langer, J. Vacanti. Principles of Tissue Engineering, Academic Press. (1997).

Google Scholar

[5] K. G Marra, P. G Campbell, P. A DiMilla, P. N Kumta, M. P Mooney, J. W Szem, L . E Weiss, Novel Three Dimensional Biodegradable Scaffolds for Bone Tissue Engineering. MRS Proceedings, Materials Research Society Fall Meeting, (1998).

DOI: 10.1557/proc-550-155

Google Scholar

[6] K. Gomi, J. E Davies. Guided bone tissue elaboration by osteogenic cells in vitro. J. Biomed. Mater. Res., 1993. 27 (4), 429-431.

DOI: 10.1002/jbm.820270403

Google Scholar

[7] H. K Park, J. B Lee, F. G Diaz, M. Dujovny. Biomechanical Simulation for 3 layer Calvarial Prosthesis. Engineering in Medicine and Biology, Proceedings. 2002, October 23-26, 2515-6.

Google Scholar

[8] B. San Miguel, R. Kriauciunas, S. Tosatti, M. Ehrbar, C. Ghayor, M. Textor, F. E Weber. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds. J. Biomed Mater Res A., 2010, 94 (4), 1023-33.

DOI: 10.1002/jbm.a.32773

Google Scholar

[9] L. L Hench. The story of bioglass. J. Mater Sci Mater Med., 2006, 17 (11), 967-978.

DOI: 10.1007/s10856-006-0432-z

Google Scholar

[10] L. L Hench, J. M Polak. Third generation biomedical materials. Science, 2002, 295, 1014-7.

Google Scholar

[11] E. J Schepers, P Ducheyne, L. Barbier, S. Schepers. Bioactive glass particles of narrow size range: A new material for the repair of bony defects. Implant Dentistry 1993, 2 (3), 151-6.

DOI: 10.1097/00008505-199309000-00002

Google Scholar

[12] J. Wilson, S. Low, A. Fetner, L. L Hench. Bioactive materials for periodontal treatment: A comparative study. Biomaterials and Clinical Applications, A. Pizzoferrato, P. G Marchetti, A. Ravaglioli, A.J. C Lee (eds. ), Elsevier Science, Amsterdam, 1987, 223-8.

Google Scholar

[13] B. Oguntebi, A. Clarke, J. Wilson. Pulp capping with Bioglass and autologous demineralized dentin in miniature swine. J. Dent. Res., 1993, 72 (2), 484-9.

DOI: 10.1177/00220345930720020301

Google Scholar

[14] H. R Stanley, M. B Hall, F. Colaizzi, A. E Clark. Residual alveolar ridge maintenance with a new endosseous implant material. J. Prosth. Dent., 1987, 58 (5), 607-13.

DOI: 10.1016/0022-3913(87)90393-3

Google Scholar

[15] D. L Wheeler, K. E Stokes, H. M Park, J. O Hollinger. Evaluation of particulate Bioglass in a rabbit radius ostectomy model. J. Biomed. Mater. Res., 1997, 35(2), 249-54.

DOI: 10.1002/(sici)1097-4636(199705)35:2<249::aid-jbm12>3.0.co;2-c

Google Scholar

[16] J. Wilson, D, Nolletti, Bonding of soft tissues to Bioglass. in Handbook of Bioactive Ceramics, T. Yamamuro, L. L Hench, J. Wilson (eds. ), CRC Press, Boca Raton, FL, 1990, 283-302.

DOI: 10.1002/jbm.820250709

Google Scholar

[17] J. Wilson, L. T Yu, B. S Beale. Bone augmentation using Bioglass particulates in dogs: Pilot study. in Bioceramics, 1992, 5, 139-146.

Google Scholar

[18] E. Schepers, M. de Clercq, P. Ducheyne, R. Kempeneers. Bioactive glass particulate material as a filler for bone lesions. J. Oral Rehabil., 1991, 18 (5), 439-452.

DOI: 10.1111/j.1365-2842.1991.tb01689.x

Google Scholar

[19] M. Spagnuolo, L. Liu. Fabrication and Degradation of Electrospun Scaffolds from L-tyrosine Based Polyurethane Blends for Tissue Engineering Applications. J. Nanotechnology, 2012, 1-11.

DOI: 10.5402/2012/627420

Google Scholar

[20] C. D Chin, K. Khanna, S. K Sia. A microfabricated porous collagen-based scaffold as prototype for skin substitutes. Biomed Microdevices, 2008, 10 (3), 459-67.

DOI: 10.1007/s10544-007-9155-2

Google Scholar

[21] S. Kirubanandan, P. K Sehgal. Regeneration of Soft Tissue using Porous Bovine Collagen Scaffold. J. Optoelectronics and Biomedical Materials, 2010, 2 (3), 141-9.

Google Scholar

[22] C. E Holy, C. Cheng, J. E Davies, M. S Shoichet. Optimizing the sterilization of PLGA scaffolds for use in tissue engineering. Biomaterials, 2001, 22, 25-31.

DOI: 10.1016/s0142-9612(00)00136-8

Google Scholar

[23] C. Garcia, S. Ceré, A. Durán. Bioactive coatings prepared by sol-gel on stainless steel. J Non Cryst. Solids, 2004, 348, 218-24.

DOI: 10.1016/j.jnoncrysol.2004.08.172

Google Scholar

[24] M. Mozafari, M. Rabiee, M. Azami, S. Maleknia. Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds. Applied Surface Science, 2010, 257 (5), 1740-49.

DOI: 10.1016/j.apsusc.2010.09.008

Google Scholar

[25] M. Mozafari, F. Moztarzadeh, M. Rabiee, M. Azami, S. Maleknia, M. Tahriri, Z. Moztarzadeh, N. Nezafati. Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceramics International, 2010, 36 (8), 2431-9.

DOI: 10.1016/j.ceramint.2010.07.010

Google Scholar

[26] N. D Doiphode, T. Huang, M. C Leu, M. N Rahaman, D. E Day. Freeze extrusion fabrication of 13-93 bioactive glass scaffolds for bone repair. J Mater Sci Mater Med., 2011, 22 (3), 515-23.

DOI: 10.1007/s10856-011-4236-4

Google Scholar

[27] W. Sun, P. Lal. Recent Development on Computer-Aided Tissue Engineering - A Review. J. Comput. Methods Programs Biomed., 2002, 67 (2), 85-103.

DOI: 10.1016/s0169-2607(01)00116-x

Google Scholar

[28] B. Starly, J. Nam, W. Lau, W. Sun. Layered Composite Model for Design and Fabrication of Bone Replacement. Proc. of 13th Solid Freeform Fabrication Symposium, Austin, TX, 5-8 August 2002. p.24.

Google Scholar

[29] W. Sun. BioCAD in tissue science and engineering. 11th IEEE International Conference on Computer Aided Design and Computer Graphics, 2009. 43-44.

DOI: 10.1109/cadcg.2009.5246807

Google Scholar

[30] W. Sun, B. Starly, J. Nam, A. Darling. Bio-CAD modeling and its applications in computer-aided tissue engineering. Computer-Aided Design, 2005, 37, 1097-1114.

DOI: 10.1016/j.cad.2005.02.002

Google Scholar

[31] R. Sulaiman, L. W Kit, A.Y. M Kassim, H. A Hamid. Modelling of human anatomy in 3-D from dicom medical images into computer aided design. Proceedings International Conference on Electrical Engineering and Informatics, June (2007).

Google Scholar

[32] J. Skrzat. Modelling the calvarium diploe. Folia Morphol (Warsz), 2006, 65 (2), 132-5.

Google Scholar

[33] M. H Fathi, V. Mortzavi, A. Doostmohammadi. Bioactive Glass Nanopowder for theTreatment of Oral Bone Defects. J. Dentistry, 2007, 4 (3), 115-22.

Google Scholar

[34] J. M Gomez-Vega, E. Saiz, A. P Tomsia, G. W Marshall, S. J Marshall. Bioactive glass coatings with hydroxyapatite and Bioglass particles on Ti-based implants. 1-Processing. Biomaterials, 2000, 21 (2), 105-11.

DOI: 10.1016/s0142-9612(99)00131-3

Google Scholar

[35] T. Waltimo, T. J Brunner, M. Vollenweider, W. J Stark, M. Zehnder. Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res, 2007, 86 (8), 754-7.

DOI: 10.1177/154405910708600813

Google Scholar

[36] J. Román, S. Padilla, M. Vallet-Regi. Sol-Gel Glasses as Precursors of Bioactive Glass Ceramics. Chem. Mater., 2003, 15 (3), 798-806.

DOI: 10.1021/cm021325c

Google Scholar

[37] Z-H Zhou, J-M Ruan, Z-C Zhou, X-J Shen. Bioactivity of bioresorbable composite based on bioactive glass and poly-L-lactide. Transactions of Nonferrous Metals Society of China, 2007, 17 (2), 394-9.

DOI: 10.1016/s1003-6326(07)60105-8

Google Scholar

[38] H. S Costa, M. F Rocha, G. I Andrade, E. F Barbosa-Stancioli, M. M Pereira, R. L Orefice, W. L Vasconcelos, H. S Mansur. Sol-gel derived composite from bioactive glass-polyvinyl alcohol. J. Mater Sci., 2008, 43 (2), 494-502.

DOI: 10.1007/s10853-007-1875-4

Google Scholar

[39] A. Maciel, R. Boulic, D. Thalmann. Deformable tissue paramererized by properties of real biological tissue. Conference Paper, Springer Science Business Media, 2003, 74-87.

DOI: 10.1007/3-540-45015-7_8

Google Scholar

[40] V. Karageorgiou, D. Kaplan. Porosity of 3D Biomaterial Scaffolds and Osteogenesis. Biomaterials, 2005, 26 (27), 5474-5491.

DOI: 10.1016/j.biomaterials.2005.02.002

Google Scholar

[41] T. M O'Shea, X. Miao. Preparation and characterisation of plga-coated porous bioactive glass-ceramic scaffolds for subchondral bone tissue engineering. Proceedings of 9th International Symposium on Ceramic Materials and Components for Energy and Environmental Applications, November (2008).

DOI: 10.1002/9780470640845.ch73

Google Scholar

[42] K. C Kolan, M. C Leu, G. E Hilmas, R. F Brown, M. Velez. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering. Biofabrication, 2011, 3 (2): 025004. Epub June (2011).

DOI: 10.1088/1758-5082/3/2/025004

Google Scholar

[43] B. San Miguel, R. Kriauciunas, S. Tosatti, M. Ehrbar, C. Ghayor, M. Textor, F. E Weber. Enhanced osteoblastic activity and bone regeneration using surface-modified porous bioactive glass scaffolds. J. Biomed. Mater. Res. A, 2010, 94A (4), 1023-35.

DOI: 10.1002/jbm.a.32773

Google Scholar

[44] J-L Milan, J. A Planell, D. Lacroix. Simulation of bone tissue formation within a porous scaffold under dynamic compression. Biomech Model Mechanobiol., 2010, 9 (5), 583-96.

DOI: 10.1007/s10237-010-0199-5

Google Scholar

[45] M. Azami, F. Moztarzadeh, M. Tahriri. Preparation, characterizationand mechanical properties of controlled porous gelatin/hydroxy apatite nanocomposite through layer solvent casting combined with freeze-drying and lamination techniques. J. Porous Mater., 2010, 17 (3), 313-20.

DOI: 10.1007/s10934-009-9294-3

Google Scholar

[46] F. Hafezi, F. Hosseinnejad, A. A Fooladi, S. Mohit Mafi, A. Amiri, M. R Nourani. Transplantation of nano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna. J Mater Sci Mater Med, 2012 July. DOI 10. 1007/s10856-012-4722-3.

DOI: 10.1007/s10856-012-4722-3

Google Scholar