Preparation of Poly(vinyl alcohol)/Chitosan-Blended Hydrogels: Properties, In Vitro Studies and Kinetic Evaluation

Article Preview

Abstract:

Articular Cartilage Defects Are a Recent Critical Orthopaedic Issue. Hydrogels Have Been Widely Used in Soft Tissue Engineering Scaffolds as their Structures Are Similar to the Macromolecular-Based Components in the Human Body. Hydrogels Including those Based on Poly(vinyl Alcohol) (PVA) and Chitosan Are of Considerable Interest for Utilization in the Field of Tissue Engineering because of their Appropriate Biocompatibility. PVA Gels Can Be Formed by Chemical or Physical Crosslinking. the “freezing-Thawing” (FT) Process Is the Most Mild, Facile and Effective Method to Produce Physically Crosslinked PVA Gel, because it Does Not Require the Presence of the Crosslinking Agent that May Cause Toxicity. in this Study Hydrogels Based on PVA and Chitosan in Different Blend Ratios Were Prepared, and the Effect of the Freeze-Thaw Cycles and Glutaraldehyde on the Hydrogel Properties Was Investigated. the Results Showed that Freeze-Thaw Cycles Increased the Tensile Strength and the Samples’ Resistance to Degradation. the Biocompatibility of the Hydrogels Was Analysed Using Chondrocyte Cells Separated from Distal Femur of Men. Cell Toxicity Assay Performed for Measurement of Cell Viability of the Samples Indicated Biocompatibility.

You might also be interested in these eBooks

Info:

Pages:

63-72

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. M Cloyd, N. R Malhotra, L. Weng, W. Chen, R. L Mauck, D. M Elliott. Material properties in unconfined compression of human nucleus pulposus, injectable hyaluronic acid-based hydrogels and tissue engineering scaffolds. Eur. Spine J. 2007, 16, 1892.

DOI: 10.1007/s00586-007-0443-6

Google Scholar

[2] S. S Jang, W. A Goddard, M. Yashar, S. Kalani. Mechanical and transport properties of the poly(ethylene oxide)-poly(acrylic acid) double network hydrogel from molecular dynamic simulations. J. Phys. Chem. B. 2007, 111, 1729.

DOI: 10.1021/jp0656330

Google Scholar

[3] J. Elisseeff, M. Ruffner, T. G Kim, C. Williams. Cellular Photoencapsulation in Hydrogels. Wiley-Interscience: New York, 2006, chap. 9, p.215.

Google Scholar

[4] T. Wang, M. Turhan, S. Gunasekaran. Selected properties of pH-sensitive, biodegradable chitosan-poly(vinyl alcohol) hydrogel. Polym. Int. 2004, 53, 911.

DOI: 10.1002/pi.1461

Google Scholar

[5] D. T Mathews, Y. A Birney, P. A Cahill, G. B McGuinness. Vascular cell viability on polyvinyl alcohol hydrogels modified with water-soluble and insoluble Chitosan. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2008, 84, 531.

DOI: 10.1002/jbm.b.30901

Google Scholar

[6] H. Yu, X. Xu, X. Chen, J. Hao, X. Jing. Medicated wound dressings based on poly(vinyl alcohol)/poly(N-vinyl pyrrolidone)/chitosan hydrogels. J. Appl. Polym. Sci. 2006, 101, 2453.

DOI: 10.1002/app.23344

Google Scholar

[7] D. C Charlton, M.G. E Peterson, K. Spiller, A. Lowman, P. A Torzilli, S. A Maher. Semi-degradable scaffold for articular cartilage replacement. Tissue Eng. Part A. 2008, 14, 207.

DOI: 10.1089/ten.a.2006.0344

Google Scholar

[8] C. M Paranhos, R. N Oliveira, B. G Soares, L. A Pessan. Poly(vinyl alcohol)/sulfonated polyester hydrogels produced by freezing and thawing technique: preparation and characterization. Mater. Res. 2007, 10, 43.

DOI: 10.1590/s1516-14392007000100010

Google Scholar

[9] S. Bonakdar, F. Orang, M. Rafienia, R. Imani. Comparison of the effect of hydrophilicity on biocompatibility and platelet adhesion of two different kinds of biomaterials. Iran. J. Pharm. Sci. 2008, 4, 37.

Google Scholar

[10] Y. Tabata. Biomaterials design of culture substrates for cell research. Inflammation and regeneration. 2011, 31, 137.

Google Scholar

[11] J. Du, S. Zhang, R. Sun, L. F Zhang, C. D Xiong, Y. X Peng. Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. II. release of albumin in vitro. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 72, 299.

DOI: 10.1002/jbm.b.30156

Google Scholar

[12] A. Lahiji, A. Sohrabi, D. S Hungerford, C. G Frondoza. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J. Biomed. Mater. Res. 2000, 51, 586.

DOI: 10.1002/1097-4636(20000915)51:4<586::aid-jbm6>3.0.co;2-s

Google Scholar

[13] V. B Kotwal, M. Saifee, N. Inamdar, K. Bhise. Biodegradable polymers: which, when and why?. Indian J. Pharm. Sci. 2007, 69, 616.

DOI: 10.4103/0250-474x.38465

Google Scholar

[14] B. Baroli. Hydrogels for tissue engineering and delivery of tissue-inducing substances. J. Pharm. Sci. 2007, 96, 2197.

DOI: 10.1002/jps.20873

Google Scholar

[15] H. Yu, W. Wang, X. Chen, C. Deng, X. Jing. Synthesis and characterization of the biodegradable polycaprolactone-graft-chitosan amphiphilic copolymers. Biopolymers. 2006, 83, 233.

DOI: 10.1002/bip.20551

Google Scholar

[16] N. E Fedorovich, J. Alblas, J. R De Wijn, W. E Hennink, A. J Verbout, W. J Dhert. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the art and novel application in organ printing-A review. Tissue Eng. 2007, 13, (1905).

DOI: 10.1089/ten.2006.0175

Google Scholar

[17] P. R Dallan, P. L Moreira, L. Petinari, S. M Malmonge, M. M Beppu, S. C Genari, A. M Moraes. Effects of chitosan solution concentration and incorporation of chitin and glycerol on dense chitosan membrane properties. J. Biomed. Mater. Res. B: Appl. Biomater. 2007, 80, 394.

DOI: 10.1002/jbm.b.30610

Google Scholar

[18] C. Huin-Amargier, P. Marchal, E. Payan, P. Netter, E. Dellacherie. New physically and chemically crosslinked hyaluronate (HA)-based hydrogels for cartilage repair. J. Biomed. Mater. Res. 2006, 76, 416.

DOI: 10.1002/jbm.a.30536

Google Scholar

[19] X. Jiang, H. Dai, K. W Leong, S. H Goh, H. Q Mao, Y.Y. Yang. Chitosan-g-PEG/DNA complexes deliver gene to the rat liver via intrabiliary and intraportal infusions. J. Gene Med. 2006, 8, 477.

DOI: 10.1002/jgm.868

Google Scholar

[20] J. W Wang, M. H Hon. Sugar-mediated chitosan/poly(ethylene glycol)-beta-dicalcium pyrophosphate composite: Mechanical and microstructural properties. J. Biomed. Mater. Res. 2003, 64, 262-272.

DOI: 10.1002/jbm.a.10358

Google Scholar

[21] K. Kurita. Chitin and chitosan: functional biopolymers from marine crustaceans. Mar. Biotechnol. 2006, 8, 203.

DOI: 10.1007/s10126-005-0097-5

Google Scholar

[22] U. S Sajeev, K. A Anand, D. Menon, S. Nair. Control of nanostructures in PVA, PVA/chitosan blends and PCL through electrospinning. Bull. Mater. Sci. 2008, 31, 343.

DOI: 10.1007/s12034-008-0054-9

Google Scholar

[23] N. Minoura, T. Koyano, N. Koshizaki, H. Umehara, M. Nagura, K. Kobayashi. Preparation, properties, and cell attachment/growth behaviour of PVA/chitosan-blended hydrogels. Mater. Sci. Eng. 1998, 6, 275.

DOI: 10.1016/s0928-4931(98)00062-9

Google Scholar

[24] E. S Costa-Júnior, E. F Barbosa-Stancioli, A.A. P Mansur, W. L Vasconcelos, H. S Mansur. Preparation and characterization of chitosan/poly(vinylalcohol) chemically crosslinked blends for biomedical applications. Carbohydr. Polym. 2009, 76, 472.

DOI: 10.1016/j.carbpol.2008.11.015

Google Scholar

[25] J. Berger, M. Reist, J. M Mayer, O. Felt, R. Gurny. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm. 2004, 57, 35.

DOI: 10.1016/s0939-6411(03)00160-7

Google Scholar

[26] K. Kachi, N. Tomita, K. Yamamoto, R. Takaya, Y. Tamada. Tribological maturation of regenerated cartilage was inhibited by using chondrocyte aggregates. J. Biomech. Sci. Eng. 2009, 4, 174.

DOI: 10.1299/jbse.4.174

Google Scholar

[27] H.P. S Abdul Khalil, M. Jawaid, A. Abu Bakar. Woven hybrid composites: water absorption and thickness swelling behaviours. BioRes. 2011, 6, 1043.

Google Scholar

[28] C. S Wu, H. T Liao. A new biodegradable blends prepared from polylactide and hyaluronic acid. Polym. 2005, 46, 10017.

DOI: 10.1016/j.polymer.2005.08.056

Google Scholar

[29] Y. Liu, N. E Vrana, P. A Cahill, G. B McGuinness. Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J. Biomed. Mater. Res. B: Appl. Biomater. 2009, 90, 492.

DOI: 10.1002/jbm.b.31310

Google Scholar

[30] Y. Zhao, T. Tan. Poly(aspartic acid) super-absorbent resin produced by chemical crosslinking and physical freeze/thawing. Macromol. Chem. Phys. 2006, 207, 1297.

DOI: 10.1002/macp.200600168

Google Scholar