Hydroxyapatite Matrix Composites by Hot Isostatic Pressing: Part 1. Alumina Fibre Reinforced

Article Preview

Abstract:

Fracture Toughness Improvement of the Hydroxyapatite Matrix Composite, to a Level Comparable to that of Natural Bone for in Vivo Applications, Was the Aim of the Present Work. Hot Isostatic Press Using a Graphite/stainless Steel Encapsulation System Enabled the Production of Fully Dense Decomposition-Free Hap with Toughness Improvements of: 2.4 Times (Al2O3 Fibres, Optimally 20 Vol%). Glass Encapsulation of Fibre-Reinforced Hap Resulted in Aeration from Sample Volatilization. Further, it Was Found that the Hap Decomposition Temperature Was Higher at 100 Mpa (the Hiping Pressure) than for Pressureless Sintering. the Toughening Effect of the Al2o3 Fibre Additive Induced Plastic Deformation and Ductile Fracture.

You might also be interested in these eBooks

Info:

Pages:

73-83

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. L Hench. Bioceramic: From Concept to Clinic. J. Am. Ceram. Soc., 74 (7), 1487-510, (1991).

Google Scholar

[2] M. J Jarcho. Calcium Phosphate Ceramics as Hard Tissue Prosthetics. Clin. Orthop. Rel. Res., (157), 259-78 (1981).

Google Scholar

[3] N. Monmaturapoj, C. Yatongchai. Effect of Sintering on Microstructure and Properties of Hydroxyapatite Produced by Different Synthesizing Methods. J. Metals, Mater. Minerals, 20 (2), 53-61, (2010).

Google Scholar

[4] J. Majling, P. Zn‏áik, A. Palov‏á, S. Svet‏ík, S. Koval‏ík, D. K Agrawal, R. Roy. Sintering of the ultrahigh pressure densified hydroxyapatite monolithic xerogels. J. Mater. Res., 12 (1), 198-202, (1997).

DOI: 10.1557/jmr.1997.0026

Google Scholar

[5] J. A Delgado, L. Morejón, S. Mart‏ínez, M. P Ginebra, N. Carlsson, E. Fern‏ández, J. A Planell, M. T Clavaguera-Mora, J. Rodr‏íguez-Viejo. Zirconia-toughened hydroxyapatite ceramic obtained by wet sintering. J. Mater. Sci. Mater. Med., 10 (12), 715-19, (1999).

DOI: 10.4028/www.scientific.net/kem.192-195.151

Google Scholar

[6] A. M Knepper, B. K Milthorpe, S. Morica. Interdiffusion in short-fibre reinforced hydroxyapatite ceramics. J. Mater. Sci. Mater. Med., 9 (10), 589-96, (1998).

Google Scholar

[7] A. A White, I. A Kinloch, A. H Windle, S. M Best. Optimization of the sintering atmosphere for high-density hydroxyapatite-carbon nanotube composites. J. R. Soc. Interface, 7 (Supp 5), S529-39, (2010).

DOI: 10.1098/rsif.2010.0117.focus

Google Scholar

[8] F. N Oktar, S. Agathopoulos, L. S Ozyegin, O. Gunduz, N. Demikol, Y. Bozkurt, S. Salman. Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2. J. Mater. Sci. Mater. Med., 18 (11), 2137-43, (2007).

DOI: 10.1007/s10856-007-3200-9

Google Scholar

[9] Y. Nayak, R. P Rana, S. K Pratihar, S. Bhattacharyya. Pressureless sintering of dense hydroxyapatite-zirconia composites. J. Mater. Sci. Mater. Med., 19 (6), 2437-44, (2008).

DOI: 10.1007/s10856-008-3371-z

Google Scholar

[10] D. J Curran, T. J Fleming, G. Kawachi, M. R Towler. Characterisation and mechanical testing of hydrothermally treated HA/ZrO2 composites. J. Mater. Sci. Mater. Med., 20 (11), 2235-41, (2009).

DOI: 10.1007/s10856-009-3801-6

Google Scholar

[11] S. Hesaraki, T. Ebadzadeh, S. Ahmadzadeh-Asl. Nanosilicon carbide/hydroxyapatite nanocomposites: structural, mechanical and in vitro cellular properties. J. Mater. Sci. Mater. Med., 21 (7), 2141-9, (2010).

DOI: 10.1007/s10856-010-4068-7

Google Scholar

[12] O. Gunduz, E. M Erkan, S. Daglilar, S. Salman, S. Agathopoulos, F. N Oktar. Composites of bovine hydroxyapatite (BHA) and ZnO. J. Mater. Sci., 43 (8), 2536-40, (2008).

DOI: 10.1007/s10853-008-2497-1

Google Scholar

[13] R. Ramachandra Rao, T. S Kannan. Synthesis and sintering of hydroxyapatite-zirconia composites. Materials Science and Engineering C, 20 (1-2), 187-193, (2002).

DOI: 10.1016/s0928-4931(02)00031-0

Google Scholar

[14] S. L Shi, W. Pan. Machinable Ti3SiC2 /Hydroxyapatite Bioceramic Composites by Spark Plasma Sintering. J. Am. Ceram. Soc., 90 (10), 3331-33, (2007).

DOI: 10.1111/j.1551-2916.2007.01882.x

Google Scholar

[15] W. R Weinand, F.F. R Goncalves, W. M Lima. Effect of Sintering Temperature in Physical-Mechanical Behaviour and in Titanium-Hydroxyapatite Composite Sinterability. Materials Science Forum, 530-531, 249, (2006).

DOI: 10.4028/www.scientific.net/msf.530-531.249

Google Scholar

[16] K. A Zeigler, A. J Ruys, C. C Sorrell, B. K Milthorpe, A. Brandwood. Interfacial Analysis of Hydroxyapatite-Particulate Addition Composites. pp.623-28 In Ceramics: Adding the Value, Volume 2 (proceedings of the International Ceramic Conference, Austceram 92). Edited by M. J Bannister. CSIRO Publications, Melbourne, (1992).

Google Scholar

[17] A. J Ruys, K. A Zeigler, B. K Milthorpe, C. C Sorrell. Hydroxylapatite-Ceramic/Metal Composites: Quantification of Additive-Induced Dehydration. pp.591-97 in Ceramics: Adding the Value, Volume 1. Edited by M.J. Bannister. CSIRO Publications, Melbourne, (1992).

Google Scholar

[18] K. A Zeigler, A. J Ruys, C. C Sorrell. Interdiffusion in Hydroxyapatite Composites. pp.175-84 in Proceedings of the 3rd Australian Forum on Metal Matrix Composites. Edited by S. Bandyopadhyay and A. G Crosky. IMMA, Sydney, (1992).

Google Scholar

[19] K. Yabuta, H. Nishio, A. Kitamura, K. Uematsu. Sialon ceramics by the hot isostatic press encapsulation method. J. Mater. Sci. Lett., 10 (19), 1144-45, (2011).

DOI: 10.1007/bf00744108

Google Scholar

[20] S. Tanaka, K. Itatani, H. Uchida, M. Aizawa, I. Okada, I. J Davies, H. Suemasu, A. Nozue. The effect of rare-earth oxide addition on the hot-pressing of magnesium silicon nitride. J. Eur. Ceram. Soc., 22 (5), 777-783, (2002).

DOI: 10.1016/s0955-2219(01)00380-6

Google Scholar

[21] S. Tanaka, K. Itatani, H. Uchida, M. Aizawa, I. Okada, I. J Davies, H. Suemasu, A. Nozue. The effect of rare-earth oxide addition on the hot-pressing of magnesium silicon nitride. J. Eur. Ceram. Soc., 22 (5), 777-83, (2002).

DOI: 10.1016/s0955-2219(01)00380-6

Google Scholar

[22] S. M Naga, M. Awaad, H. F El-Maghraby, W. H Eisa, M. Abou el Ezz, F. Sommer, R. Gadow. Fabrication, Microstructure and Properties of Hot-Pressed Nd: YAG Ceramics. J. Am. Ceram. Soc., 3 (1), 35-40, (2012).

DOI: 10.1016/j.ceramint.2012.02.070

Google Scholar

[23] F. Meschke, N. Claussen, G. De Portu, J. Rödel. Preparation of high-strength (Mg, Y)-partially stabilised zirconia by hot isostatic pressing. J. Eur. Ceram. Soc., 17 (6), 843-850, (1997).

DOI: 10.1016/s0955-2219(96)00136-7

Google Scholar

[24] A. Muñoz, J. Martínez, M. A Monge, B. Savoini, R. Pareja, A. Radulescu. SANS evidence for the dispersion of nanoparticles in W-1Y2O3 and W-1La2O3 processed by hot isostatic pressing. Int. J. Refractory Metals Hard Materials, 33, 6-9, (2012).

DOI: 10.1016/j.ijrmhm.2012.01.010

Google Scholar

[25] Y. Muraoka, M. Yoshinaka, K. Hirota, O. Yamaguchi. Hot isostatic pressing of TiB2-ZrO2 (2 mol% Y2O3) composite powders. Mater. Res. Bull., 31 (7), 787-792, (1996).

DOI: 10.1016/0025-5408(96)00069-4

Google Scholar

[26] Z. H Ching, D. Zhang, I.W. M Brown. Pressureless sintering and hot isostatic pressing of Ti3Al-Al2O3 interpenetrating composites. Int. J. Modern Physics B, 20, 3848-53, (2006).

DOI: 10.1142/s0217979206040477

Google Scholar

[27] M. Yoshinaka, K. Hirota, M. Ito, H. Takano, O. Yamaguchi. Hot Isostatic Pressing of Reactive SnO2 Powder. J. Am. Ceram. Soc., 82 (1), 216-218, (1999).

DOI: 10.1111/j.1151-2916.1999.tb01746.x

Google Scholar

[28] K. Hirota, Y. Takano, M. Yoshinaka, O. Yamaguchi. Hot Isostatic Pressing of Chromium Nitrides (Cr2N and CrN) Prepared by Self-Propagating High-Temperature Synthesis. J. Am. Ceram. Soc., 84 (9), 2120-22, (2001).

DOI: 10.1111/j.1151-2916.2001.tb00969.x

Google Scholar

[29] S. Ishihara, H. Gu, B. Joachim, F. Aldinger, F. Waka. Densification of Precursor-Derived Si-C-N Ceramics by High-Pressure Hot Isostatic Pressing. J. Am. Ceram. Soc., 85 (7), 1706-12, (2002).

DOI: 10.1111/j.1151-2916.2002.tb00339.x

Google Scholar

[30] V. Martínez, J. Echeberria. Hot Isostatic Pressing of Cubic Boron Nitride-Tungsten Carbide/Cobalt (cBN-WC/Co) Composites: Effect of cBN Particle Size and Some Processing Parameters on their Microstructure and Properties. J. Am. Ceram. Soc., 90 (2), 415-24, (2007).

DOI: 10.1111/j.1551-2916.2006.01426.x

Google Scholar

[31] E. Schüller, O. A Hamed, M. Bram, D. Sebold, H. P Buchkremer, D. Stöver. Hot Isostatic Pressing (HIP) of Elemental Powder Mixtures and Prealloyed Powder for NiTi Shape Memory Parts. Adv. Eng. Mater., 6 (12), 918-24, (2003).

DOI: 10.1002/adem.200300366

Google Scholar

[32] H. T Laker. Hot Isostatic Pressing - Characteristics and Prospects in Industrial Use. pp.329-37 in High Pressure Science and AIRPT Conference. Edited by B. Vodar and Ph. Marteau. Pergamon, Oxford, (1980).

Google Scholar

[33] H. T Larker. Hot Isostatic Pressing. pp.194-201 in Engineering Materials Handbook. 4 Ceramics and Glasses. ASM International, Metals Park, Ohio, (1991).

Google Scholar

[34] H. T Larkar, J, Adlerborn, H. Bohman. Fabrication of Dense Silicon Nitride Parts by Hot Isostatic Pressing. 770335, Society of Automotive Engineers, (1977).

DOI: 10.4271/770335

Google Scholar

[35] J. Adlerborn, H. T Laker. Method of Manufacturing Bodies of Silicon Nitride. U.S. Patent No. 4, 455, 274. (November 1974).

Google Scholar

[36] J. Romp. Method of Making Sintered Hard Metal Alloys. U.S. Patent No. 2, 263, 520 (November 1938).

Google Scholar

[37] N. Claussen, K. H Heussner, R. Janssen, E. Lutz, N.A. Travitsky. White HIPing of Oxide Ceramics. pp.395-97 in Hot Isostatic Pressing-Theories and Applications. Edited by T. Garvare. CENTEK Publishers, (1988).

Google Scholar

[38] K. Uematsu, M. Takagi, T. Honda, N. Uchida, K. Saito. Transparent Hydroxyapatite Prepared by Hot Isostatic Pressing of Filter Cake. J. Am. Ceram. Soc., 72 (8), 1476-78 (1989).

DOI: 10.1111/j.1151-2916.1989.tb07680.x

Google Scholar

[39] M. Akao, H. Aoki, K. Kato. Mechanical Properties of Sintered Hydroxyapatite for Prosthetic Applications. J. Mater. Sci., 16 (3), 809-12, (1981).

DOI: 10.1007/bf02402799

Google Scholar

[40] K. Ioku, S. Somiya, M. Yoshimura. Dense/Porous Layered Apatite Ceramics Prepared by HIP Post-Sintering. J. Mater. Sci. Lett., 8 (10), 1203-04, (1989).

DOI: 10.1007/bf01730070

Google Scholar

[41] K. Hirota, T. Hasegawa, H. Monma. Densification of Hydroxyapatite by Hot Isostatic Pressing. J. Ceram. Soc. Japan. Int. Ed., 90 (11), 680-82, (1982).

DOI: 10.2109/jcersj1950.90.1047_680

Google Scholar

[42] J. Li, L. Hermansson. Mechanical Evaluation of Hot Isostatically Pressed Hydroxyapatite. Interceram, 39 (2), 13-15, (1990).

Google Scholar

[43] S. Best, W. Bonfield, C. Doyle. Optimisation of Toughness in Dense Hydroxyapatite Ceramics. pp.57-64 in Bioceramics, Volume 2 (Proceedings of 2nd International Symposium on Ceramics in Medicine). Edited by G. Heimke. German Ceramic Society, Cologne, (1990).

Google Scholar

[44] A. J Ruys, K. A Zeigler, O. C Standard, A. Brandwood, B. K Milthorpe, C. C Sorrell. Hydroxyapatite Sintering Phenomena: Densification and Dehydration Behaviour. pp.605-10 in Ceramics: Adding the Value, Volume 2. Edited by M. J Bannister. CSIRO Publications, Melbourne, (1992).

Google Scholar

[45] N. Ehsani. A. J Ruys, C. C Sorrell. Thixotropic Casting of Fecralloyâ - Fibre Reinforced Hydroxyapatite. Key Eng. Mater., 104-107 (1), 373-80, (1995).

DOI: 10.4028/www.scientific.net/kem.104-107.373

Google Scholar

[46] W. Bonfield. Advances in the Fracture Mechanics of Cortical Bone. J. Biomech., 20 (11-12), 1071-81, (1987).

Google Scholar

[47] J. C Behiri, W. Bonfield. Fracture Mechanics of Bone - The Effect of Density, Specimen Thickness and Crack Velocity on Longitudinal Fracture. J. Biomech., 17 (1), 25-34, (1984).

DOI: 10.1016/0021-9290(84)90076-9

Google Scholar

[48] The American Society for Testing and Materials, ASTM-E399, 1990. Standard Test Method For Plane-Strain Fracture Toughness of Metallic Materials.

DOI: 10.1520/stp33670s

Google Scholar

[49] The American Society for Testing and Materials, ASTM-E992-84 1989. Standard Practice for Determination of Fracture Toughness of Steels Using Equivalent Energy Methodology.

Google Scholar

[50] J. C Behiri, W. Bonfield. Crack Velocity Dependence of Longitudinal Fracture in Bone. J. Mater. Sci., 15 (7), 1841-49, (1980).

DOI: 10.1007/bf00550605

Google Scholar

[51] R. Pampuch. Constitution and Properties of Ceramic Materials; Material Science Monographs, 58. Elsevier, Amsterdam, Netherlands, (1991).

Google Scholar

[52] G. De With, A. J Corbijn. Metal Fibre Reinforced Hydroxy-apatite Ceramics. J. Mater. Sci., 24 (9), 3411-15, (1989).

DOI: 10.1007/bf01139073

Google Scholar

[53] D. R Flynn. Thermal Conductivity of Ceramics. pp.20-60 in Mechanical and Thermal Properties of Ceramics. National Bureau of Standards Special Publications, Maryland, USA, (1968).

Google Scholar

[54] R. W Rice. Mechanisms of Toughening in Ceramic Matrix Composites. Ceram. Eng. Sci. Proc., 2 (5-6), 661-81 (1981).

Google Scholar