Hydroxyapatite Matrix Composites by Hot Isostatic Pressing: Part 2. Zirconia Fibre and Powder Reinforced

Article Preview

Abstract:

The Aim of the Project Was to Enhance the Fracture Toughness of Hydroxyapatite to a Level Comparable to that of Natural Bone for in Vivo Applications. to this Aim, the Effect of Various Parameters, Were Studied. Fully Dense Decomposition-Free Hap Matrix Composite Was Produced Using Hot Isostatic Pressing Technique. A Graphite/stainless Steel Encapsulation System Was Found to Be an Appropriate Method. Glass Encapsulation Was Unsuccessful Technique due to the Excessive Low-Temperature Volatilisation, which Aerated the Glass. Toughness Improvement Was 2.7 Times for PSZ Fibres, and 2.4 Times for PSZ Powder. the Optimal Addition Level of PSZ Fibre and PSZ Powder Was 20 Vol% and ~30 Vol% Respectively. Further, it Was Found that the Hap Decomposition Temperature Was Higher at 100 Mpa (the Hiping Pressure) than for Pressureless Sintering. the Toughening Effect of the Additives Induced Plastic Deformation and Ductile Fracture.

You might also be interested in these eBooks

Info:

Pages:

85-100

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. J Ruys, K. A Zeigler, O. C Standard, A. Brandwood, B. K Milthorpe, C. C Sorrell. Hydroxyapatite Sintering Phenomena: Densification and Dehydration Behaviour, pp.605-10 in Ceramics: Adding the Value, Volume 2. Edited by M.J. Bannister. CSIRO Publications, Melbourne, (1992).

Google Scholar

[2] N. Monmaturapoj, C. Yatongchai. Effect of Sintering on Microstructure and Properties of Hydroxyapatite Produced by Different Synthesizing Methods, Journal of Metals, Materials and Minerals, 20 (2) 53-61 (2010).

Google Scholar

[3] J. Majling, P. Zn‏áik, A. Palov‏á, S. Svet‏ìk, S. Koval‏ìk, D. K Agrawal, R. Roy. Sintering of the ultrahigh pressure densified hydroxyapatite monolithic xerogels, J. Mater. Res., 12 (1), (1997).

DOI: 10.1557/jmr.1997.0026

Google Scholar

[4] F. F Lange. Constrained Network Model for Predicting Densification Behaviour of Composite Powders, J. Mater. Res., 2, 59-65 (1987).

DOI: 10.1557/jmr.1987.0059

Google Scholar

[5] A. J Ruys, M. Wei, C. C Sorrell, M. R Dickson, A. Brandwood, B. K Milthorpe. Sintering Effects on the Strength of Hydroxyapatite, Biomater., 16 (5) 409-15 (1995).

DOI: 10.1016/0142-9612(95)98859-c

Google Scholar

[6] H. Kim, Y. Kong, Y. Koh, H. Kim. Pressureless Sintering and Mechanical and Biological Properties of Fluor-hydroxyapatite Composites with Zirconia, J. Am. Ceram. Soc., 86 (12) 2019-26 (2003).

DOI: 10.1111/j.1151-2916.2003.tb03602.x

Google Scholar

[7] A. Szewczyk-Nykiel, M. Nykiel. Study of hydroxyapatite behaviour during sintering of 316L steel, Archives of Foundry Engineering Vol. 10, Special Issue 3/2010, 235-240. (16) K. Haberko, Natural hydroxyapatite – its behaviour during heat treatment, J. Eur. Ceram. Soc., 26, 537-542 (2006).

DOI: 10.1016/j.jeurceramsoc.2005.07.033

Google Scholar

[8] K. A Khalil, S. W Kim. High-Frequency Induction Heating Sintering of Hydroxyapatite-(ZrO2+3%Mol Y2O3) Bioceramics, Materials Science Forum, 534-536 (5) 1033-1036 (2007).

DOI: 10.4028/www.scientific.net/msf.534-536.1033

Google Scholar

[9] J. Weng, X. Liu, X. Zhang, X. Ji. Thermal Decomposition of Hydroxyapatite Structure Induced by Titanium and its Dioxide, J. Mater. Sci. Lett., 13, 159-61 (1994).

DOI: 10.1007/bf00278148

Google Scholar

[10] H. T Laker. Hot Isostatic Pressing - Characteristics and Prospects in Industrial Use, pp.329-37 in High Pressure Science and AIRPT Conference. Edited by B. Vodar and Ph. Marteau. Pergamon, Oxford, (1980).

Google Scholar

[11] K. Yabuta, H. Nishio, A. Kitamura, K. Uematsu. Sialon ceramics by the hot isostatic press encapsulation method, J. Mater. Sci. Lett., 10 (19) 1144-45 (2011).

DOI: 10.1007/bf00744108

Google Scholar

[12] S. Tanaka, K. Itatani, H. Uchida, M. Aizawa, I. Okada, I. J Davies, H. Suemasu, A. Nozue. The effect of rare-earth oxide addition on the hot-pressing of magnesium silicon nitride. J. Eur. Ceram. Soc., 22 (5) 777-83 (2002).

DOI: 10.1016/s0955-2219(01)00380-6

Google Scholar

[13] S. M Naga, M. Awaad, H. F El-Maghraby, W. H Eisa, M. Abou el Ezz, F. Sommer, R. Gadow. Fabrication, Microstructure and Properties of Hot-Pressed Nd: YAG Ceramics, J. Am. Ceram. Soc., 3 (3) 35-40 (2012).

DOI: 10.1016/j.ceramint.2012.02.070

Google Scholar

[14] F. Meschke, N. Claussen, G. De Portu, J. Rödel. Preparation of high-strength (Mg, Y)-partially stabilised zirconia by hot isostatic pressing. J. Eur. Ceram. Soc., 17, 843-850 (1997).

DOI: 10.1016/s0955-2219(96)00136-7

Google Scholar

[15] A. Muñoz, J. Martínez, M. A Monge, B. Savoini, R. Pareja, A. Radulescu. SANS evidence for the dispersion of nanoparticles in W-1Y2O3 and W-1La2O3 processed by hot isostatic pressing. J. Refractory Metals Hard Materials, 33, 6-9 (2012).

DOI: 10.1016/j.ijrmhm.2012.01.010

Google Scholar

[16] Y. Muraoka, M. Yoshinaka, K. Hirota, O. Yamaguchi. Hot isostatic pressing of TiB2-ZrO2 (2 mol% Y2O3) composite powders. Materials research Bulletin, 31 (7) 787-792 (1996).

DOI: 10.1016/0025-5408(96)00069-4

Google Scholar

[17] Z. H Ching, D. Zhang, I.W. M Brown. Pressureless sintering and hot isostatic pressing of Ti3Al-Al2O3 interpenetrating composites. J. Modern Physics B, 20, 35-40 (2006).

Google Scholar

[18] M. Yoshinaka, K. Hirota, M. Ito, H. Takano, O. Yamaguchi. Hot Isostatic Pressing of Reactive SnO2 Powder. J. Am. Ceram. Soc., 82 (1) 216-218 (1999).

DOI: 10.1111/j.1151-2916.1999.tb01746.x

Google Scholar

[19] K. Hirota, Y. Takano, M. Yoshinaka, O. Yamaguchi. Hot Isostatic Pressing of Chromium Nitrides (Cr2N and CrN) Prepared by Self-Propagating High-Temperature Synthesis. J. Am. Ceram. Soc., 84 (9) 2120-22 (2001).

DOI: 10.1111/j.1151-2916.2001.tb00969.x

Google Scholar

[20] S. Ishihara, H. Gu, B. Joachim, F. Aldinger, F. Waka. Densification of Precursor-Derived Si-C-N Ceramics by High-Pressure Hot Isostatic Pressing. J. Am. Ceram. Soc., 85 (7) 1710-12 (2002).

DOI: 10.1111/j.1151-2916.2002.tb00339.x

Google Scholar

[21] V. Martínez, J. Echeberria. Hot Isostatic Pressing of Cubic Boron Nitride-Tungsten Carbide/Cobalt (cBN–WC/Co) Composites: Effect of cBN Particle Size and Some Processing Parameters on their Microstructure and Properties. J. Am. Ceram. Soc., 90 (2) 415-24 (2007).

DOI: 10.1111/j.1551-2916.2006.01426.x

Google Scholar

[22] E. Schüller, O. A Hamed, M. Bram, D. Sebold, H. P Buchkremer, D. Stöve. Hot Isostatic Pressing (HIP) of Elemental Powder Mixtures and Prealloyed Powder for NiTi Shape Memory Parts. Advanced Engineering Materials, 6 (12) 918-24 (2003).

DOI: 10.1002/adem.200300366

Google Scholar

[23] H. T Larker. Hot Isostatic Pressing. pp.194-201 in Engineering Materials Handbook. 4 Ceramics and Glasses. ASM International, Metals Park, Ohio, (1991).

Google Scholar

[24] G. R Irwin, P. C Paris. Fundamental Aspects of Crack Growth and Fracture. pp.2-13 in Fracture III, Edited by H. Liebowitz. Academic Press, New York, (1971).

Google Scholar

[25] A. G Evans, C. H Hsueh. Behaviour of Large Pores During Sintering and Hot Isostatic Pressing. J. Am. Ceram. Soc., 69 (6) 444-48 (1986).

DOI: 10.1111/j.1151-2916.1986.tb07442.x

Google Scholar

[26] A. J Ruys, M. Wei, A. Brandwood, B. K Milthorpe, C. C Sorrell. The Effects of Excessive Sintering on the Properties of Hydroxyapatite. pp.586-90 in Ceramics: Adding the Value, Volume 1. Edited by M.J. Bannister. CSIRO Publications, Melbourne, (1992).

Google Scholar

[27] M. Takagi, M. Mochida, N. Uchida. Filter Cake Forming and Hot Isostatic Pressing for TZP-Dispersed Hydroxyapatite Composite. J. Mater. Sci. Mater. Med., 3, 199-203 (1992).

DOI: 10.1007/bf00713450

Google Scholar

[28] N. Ehsani. A. J Ruys, C. C Sorrell. Thixotropic Casting of Fecralloyâ - Fiber Reinforced Hydroxyapatite. Key Eng. Mater. 104 (1) 373 – 80 (1995).

DOI: 10.4028/www.scientific.net/kem.104-107.373

Google Scholar

[29] A. J Ruys, K. A Zeigler, B. K Milthorpe, C. C Sorrell. Hydroxylapatite-Ceramic/Metal Composites: Quantification of Additive-Induced Dehydration. pp.591-97 in Ceramics: Adding the Value, Volume 1. Edited by M. J Bannister. CSIRO Publications, Melbourne, (1992).

Google Scholar

[30] S. Marica. Australian Nuclear Science and Technology Organisation, personal communication, (1995).

Google Scholar

[31] W. Bonfield. Advances in the Fracture Mechanics of Cortical Bone. J. Biomechanics, 20 (11-12) 1071-81 (1987).

DOI: 10.1016/0021-9290(87)90025-x

Google Scholar

[32] J. C Behiri, W. Bonfield. Fracture Mechanics of Bone - The Effect of Density, Specimen Thickness and Crack Velocity on Longitudinal Fracture. J. Biomechanics, 17 (1) 25-34 (1984).

DOI: 10.1016/0021-9290(84)90076-9

Google Scholar

[33] The American Society for Testing and Materials, ASTM-E399, 1990. Standard Test Method For Plane-Strain Fracture Toughness of Metallic Materials.

DOI: 10.1520/stp33670s

Google Scholar

[34] The American Society for Testing and Materials, ASTM-E992-84 1989. Standard Practice for Determination of Fracture Toughness of Steels Using Equivalent Energy Methodology.

Google Scholar

[35] J. C Behiri, W. Bonfield. Crack Velocity Dependence of Longitudinal Fracture in Bone. J. Mater. Sci., 15 (7), 1841-49 (1980).

DOI: 10.1007/bf00550605

Google Scholar

[36] R. Pampuch. Constitution and Properties of Ceramic Materials; Material Science Monographs, 58, Elsevier, Amsterdam, Netherlands (1991).

Google Scholar

[37] A. G Evans. On the Crack Growth Resistance of Microcracking Brittle Materials. pp.109-136 in Fracture in Ceramic Materials; Toughening Mechanisms, Machining Damage, Shock. Edited by A. G Evans, Noyes Publication, New Jersey, USA., (1984).

Google Scholar

[38] A. G Evans. Toughening Mechanisms in Zirconia Alloys. pp.16-56 in Fracture in Ceramic Materials; Toughening Mechanisms, Machining Damage, Shock. Edited by A. G Evans, Noyes Publication, New Jersey, USA., (1984).

Google Scholar

[39] G. De With, A. J Corbijn. Metal Fiber Reinforced Hydroxyapatite Ceramics. J. Mater. Sci., 24 (9), 3411-15 (1989).

Google Scholar

[40] D. W Richerson, Modern Ceramic Engineering. Second Edition. Marcel Dekker, New York, (1992).

Google Scholar

[41] R. W Rice. Mechanisms of Toughening in Ceramic Matrix Composites. Ceram. Eng. Sci. Proc., 2 (5-6) 661-81 (1981).

Google Scholar

[42] K. Xia, T. G Langdon. Review: The Toughening and Strengthening of Ceramic Materials Through Discontinuous Reinforcement. J. Mater. Sci., 29 (20), 5219-31 (1994).

DOI: 10.1007/bf01171532

Google Scholar

[43] P. E Wang, T. K Chaki. Sintering Behaviour and Mechanical Properties of Hydroxyapatite and Dicalcium Phosphate. J. Mater. Sci. Mater. Med., 4 (2), 150-58 (1993).

DOI: 10.1007/bf00120384

Google Scholar

[44] K. Kondo, M. Okuyama, H. Ogawa, Y. Abe. Preparation of High-Strength Apatite Ceramics. Am. Ceram. Soc. Bull., 63 (6) C222-3 (1984).

DOI: 10.1111/j.1151-2916.1984.tb19487.x

Google Scholar

[45] S. R Kim, K. Hirota, F. P Okamura, Y. Hasegawa, S. J Park. Densification of Calcium-Deficient Hydroxyapatite by Hot Isostatic Pressing. J. Ceram. Soc. Japan. Int. Ed., 98 (3), 266-73 (1990).

DOI: 10.2109/jcersj.98.257

Google Scholar

[46] R. Halouani, D. Bernache-Assolant, E. Champion, A. Ababou. Microstructure and Related Mechanical Properties of Hot Pressed Hydroxyapatite Ceramics. J. Mater. Sci. Mater. Med., 5 (8), 563-68 (1994).

DOI: 10.1007/bf00124890

Google Scholar

[47] Whisker Technology, Edited by A.P. Levitt, John Wiley & Sons Ltd., Massachusetts, USA, (1970).

Google Scholar

[48] T. L Starr. Packing Density of Fibre/Powder Blends. Am. Ceram. Soc. Bull., 65 (9) 1293-96 (1986).

Google Scholar

[49] T. L Starr. Packing Density of Fibre/Powder Blends. Am. Ceram. Soc. Bull., 65 (9) 1293-96 (1986).

Google Scholar

[50] J. R Porter, F. F Lange, A. H Chokshi. Processing and Creep Performance of SiC-Whisker-Reinforced Al2O3. Am. Ceram. Soc. Bull., 66 (2) 343-47 (1987).

Google Scholar

[51] T. N Tiegs, P. E Becher. Sintered Al2O3-SiC Whisker Composite. Am. Ceram. Soc. Bull., 67 (12) C267-C269 (1984).

Google Scholar

[52] R. W Rice. Ceramic Matrix Composite Toughening Mechanisms: An Update. Ceram. Eng. Sci. Proc., 6 (7-8) 589-607 (1985).

Google Scholar