[1]
A. J Ruys, K. A Zeigler, O. C Standard, A. Brandwood, B. K Milthorpe, C. C Sorrell. Hydroxyapatite Sintering Phenomena: Densification and Dehydration Behaviour, pp.605-10 in Ceramics: Adding the Value, Volume 2. Edited by M.J. Bannister. CSIRO Publications, Melbourne, (1992).
Google Scholar
[2]
N. Monmaturapoj, C. Yatongchai. Effect of Sintering on Microstructure and Properties of Hydroxyapatite Produced by Different Synthesizing Methods, Journal of Metals, Materials and Minerals, 20 (2) 53-61 (2010).
Google Scholar
[3]
J. Majling, P. Znáik, A. Palová, S. Svetìk, S. Kovalìk, D. K Agrawal, R. Roy. Sintering of the ultrahigh pressure densified hydroxyapatite monolithic xerogels, J. Mater. Res., 12 (1), (1997).
DOI: 10.1557/jmr.1997.0026
Google Scholar
[4]
F. F Lange. Constrained Network Model for Predicting Densification Behaviour of Composite Powders, J. Mater. Res., 2, 59-65 (1987).
DOI: 10.1557/jmr.1987.0059
Google Scholar
[5]
A. J Ruys, M. Wei, C. C Sorrell, M. R Dickson, A. Brandwood, B. K Milthorpe. Sintering Effects on the Strength of Hydroxyapatite, Biomater., 16 (5) 409-15 (1995).
DOI: 10.1016/0142-9612(95)98859-c
Google Scholar
[6]
H. Kim, Y. Kong, Y. Koh, H. Kim. Pressureless Sintering and Mechanical and Biological Properties of Fluor-hydroxyapatite Composites with Zirconia, J. Am. Ceram. Soc., 86 (12) 2019-26 (2003).
DOI: 10.1111/j.1151-2916.2003.tb03602.x
Google Scholar
[7]
A. Szewczyk-Nykiel, M. Nykiel. Study of hydroxyapatite behaviour during sintering of 316L steel, Archives of Foundry Engineering Vol. 10, Special Issue 3/2010, 235-240. (16) K. Haberko, Natural hydroxyapatite – its behaviour during heat treatment, J. Eur. Ceram. Soc., 26, 537-542 (2006).
DOI: 10.1016/j.jeurceramsoc.2005.07.033
Google Scholar
[8]
K. A Khalil, S. W Kim. High-Frequency Induction Heating Sintering of Hydroxyapatite-(ZrO2+3%Mol Y2O3) Bioceramics, Materials Science Forum, 534-536 (5) 1033-1036 (2007).
DOI: 10.4028/www.scientific.net/msf.534-536.1033
Google Scholar
[9]
J. Weng, X. Liu, X. Zhang, X. Ji. Thermal Decomposition of Hydroxyapatite Structure Induced by Titanium and its Dioxide, J. Mater. Sci. Lett., 13, 159-61 (1994).
DOI: 10.1007/bf00278148
Google Scholar
[10]
H. T Laker. Hot Isostatic Pressing - Characteristics and Prospects in Industrial Use, pp.329-37 in High Pressure Science and AIRPT Conference. Edited by B. Vodar and Ph. Marteau. Pergamon, Oxford, (1980).
Google Scholar
[11]
K. Yabuta, H. Nishio, A. Kitamura, K. Uematsu. Sialon ceramics by the hot isostatic press encapsulation method, J. Mater. Sci. Lett., 10 (19) 1144-45 (2011).
DOI: 10.1007/bf00744108
Google Scholar
[12]
S. Tanaka, K. Itatani, H. Uchida, M. Aizawa, I. Okada, I. J Davies, H. Suemasu, A. Nozue. The effect of rare-earth oxide addition on the hot-pressing of magnesium silicon nitride. J. Eur. Ceram. Soc., 22 (5) 777-83 (2002).
DOI: 10.1016/s0955-2219(01)00380-6
Google Scholar
[13]
S. M Naga, M. Awaad, H. F El-Maghraby, W. H Eisa, M. Abou el Ezz, F. Sommer, R. Gadow. Fabrication, Microstructure and Properties of Hot-Pressed Nd: YAG Ceramics, J. Am. Ceram. Soc., 3 (3) 35-40 (2012).
DOI: 10.1016/j.ceramint.2012.02.070
Google Scholar
[14]
F. Meschke, N. Claussen, G. De Portu, J. Rödel. Preparation of high-strength (Mg, Y)-partially stabilised zirconia by hot isostatic pressing. J. Eur. Ceram. Soc., 17, 843-850 (1997).
DOI: 10.1016/s0955-2219(96)00136-7
Google Scholar
[15]
A. Muñoz, J. Martínez, M. A Monge, B. Savoini, R. Pareja, A. Radulescu. SANS evidence for the dispersion of nanoparticles in W-1Y2O3 and W-1La2O3 processed by hot isostatic pressing. J. Refractory Metals Hard Materials, 33, 6-9 (2012).
DOI: 10.1016/j.ijrmhm.2012.01.010
Google Scholar
[16]
Y. Muraoka, M. Yoshinaka, K. Hirota, O. Yamaguchi. Hot isostatic pressing of TiB2-ZrO2 (2 mol% Y2O3) composite powders. Materials research Bulletin, 31 (7) 787-792 (1996).
DOI: 10.1016/0025-5408(96)00069-4
Google Scholar
[17]
Z. H Ching, D. Zhang, I.W. M Brown. Pressureless sintering and hot isostatic pressing of Ti3Al-Al2O3 interpenetrating composites. J. Modern Physics B, 20, 35-40 (2006).
Google Scholar
[18]
M. Yoshinaka, K. Hirota, M. Ito, H. Takano, O. Yamaguchi. Hot Isostatic Pressing of Reactive SnO2 Powder. J. Am. Ceram. Soc., 82 (1) 216-218 (1999).
DOI: 10.1111/j.1151-2916.1999.tb01746.x
Google Scholar
[19]
K. Hirota, Y. Takano, M. Yoshinaka, O. Yamaguchi. Hot Isostatic Pressing of Chromium Nitrides (Cr2N and CrN) Prepared by Self-Propagating High-Temperature Synthesis. J. Am. Ceram. Soc., 84 (9) 2120-22 (2001).
DOI: 10.1111/j.1151-2916.2001.tb00969.x
Google Scholar
[20]
S. Ishihara, H. Gu, B. Joachim, F. Aldinger, F. Waka. Densification of Precursor-Derived Si-C-N Ceramics by High-Pressure Hot Isostatic Pressing. J. Am. Ceram. Soc., 85 (7) 1710-12 (2002).
DOI: 10.1111/j.1151-2916.2002.tb00339.x
Google Scholar
[21]
V. Martínez, J. Echeberria. Hot Isostatic Pressing of Cubic Boron Nitride-Tungsten Carbide/Cobalt (cBN–WC/Co) Composites: Effect of cBN Particle Size and Some Processing Parameters on their Microstructure and Properties. J. Am. Ceram. Soc., 90 (2) 415-24 (2007).
DOI: 10.1111/j.1551-2916.2006.01426.x
Google Scholar
[22]
E. Schüller, O. A Hamed, M. Bram, D. Sebold, H. P Buchkremer, D. Stöve. Hot Isostatic Pressing (HIP) of Elemental Powder Mixtures and Prealloyed Powder for NiTi Shape Memory Parts. Advanced Engineering Materials, 6 (12) 918-24 (2003).
DOI: 10.1002/adem.200300366
Google Scholar
[23]
H. T Larker. Hot Isostatic Pressing. pp.194-201 in Engineering Materials Handbook. 4 Ceramics and Glasses. ASM International, Metals Park, Ohio, (1991).
Google Scholar
[24]
G. R Irwin, P. C Paris. Fundamental Aspects of Crack Growth and Fracture. pp.2-13 in Fracture III, Edited by H. Liebowitz. Academic Press, New York, (1971).
Google Scholar
[25]
A. G Evans, C. H Hsueh. Behaviour of Large Pores During Sintering and Hot Isostatic Pressing. J. Am. Ceram. Soc., 69 (6) 444-48 (1986).
DOI: 10.1111/j.1151-2916.1986.tb07442.x
Google Scholar
[26]
A. J Ruys, M. Wei, A. Brandwood, B. K Milthorpe, C. C Sorrell. The Effects of Excessive Sintering on the Properties of Hydroxyapatite. pp.586-90 in Ceramics: Adding the Value, Volume 1. Edited by M.J. Bannister. CSIRO Publications, Melbourne, (1992).
Google Scholar
[27]
M. Takagi, M. Mochida, N. Uchida. Filter Cake Forming and Hot Isostatic Pressing for TZP-Dispersed Hydroxyapatite Composite. J. Mater. Sci. Mater. Med., 3, 199-203 (1992).
DOI: 10.1007/bf00713450
Google Scholar
[28]
N. Ehsani. A. J Ruys, C. C Sorrell. Thixotropic Casting of Fecralloyâ - Fiber Reinforced Hydroxyapatite. Key Eng. Mater. 104 (1) 373 – 80 (1995).
DOI: 10.4028/www.scientific.net/kem.104-107.373
Google Scholar
[29]
A. J Ruys, K. A Zeigler, B. K Milthorpe, C. C Sorrell. Hydroxylapatite-Ceramic/Metal Composites: Quantification of Additive-Induced Dehydration. pp.591-97 in Ceramics: Adding the Value, Volume 1. Edited by M. J Bannister. CSIRO Publications, Melbourne, (1992).
Google Scholar
[30]
S. Marica. Australian Nuclear Science and Technology Organisation, personal communication, (1995).
Google Scholar
[31]
W. Bonfield. Advances in the Fracture Mechanics of Cortical Bone. J. Biomechanics, 20 (11-12) 1071-81 (1987).
DOI: 10.1016/0021-9290(87)90025-x
Google Scholar
[32]
J. C Behiri, W. Bonfield. Fracture Mechanics of Bone - The Effect of Density, Specimen Thickness and Crack Velocity on Longitudinal Fracture. J. Biomechanics, 17 (1) 25-34 (1984).
DOI: 10.1016/0021-9290(84)90076-9
Google Scholar
[33]
The American Society for Testing and Materials, ASTM-E399, 1990. Standard Test Method For Plane-Strain Fracture Toughness of Metallic Materials.
DOI: 10.1520/stp33670s
Google Scholar
[34]
The American Society for Testing and Materials, ASTM-E992-84 1989. Standard Practice for Determination of Fracture Toughness of Steels Using Equivalent Energy Methodology.
Google Scholar
[35]
J. C Behiri, W. Bonfield. Crack Velocity Dependence of Longitudinal Fracture in Bone. J. Mater. Sci., 15 (7), 1841-49 (1980).
DOI: 10.1007/bf00550605
Google Scholar
[36]
R. Pampuch. Constitution and Properties of Ceramic Materials; Material Science Monographs, 58, Elsevier, Amsterdam, Netherlands (1991).
Google Scholar
[37]
A. G Evans. On the Crack Growth Resistance of Microcracking Brittle Materials. pp.109-136 in Fracture in Ceramic Materials; Toughening Mechanisms, Machining Damage, Shock. Edited by A. G Evans, Noyes Publication, New Jersey, USA., (1984).
Google Scholar
[38]
A. G Evans. Toughening Mechanisms in Zirconia Alloys. pp.16-56 in Fracture in Ceramic Materials; Toughening Mechanisms, Machining Damage, Shock. Edited by A. G Evans, Noyes Publication, New Jersey, USA., (1984).
Google Scholar
[39]
G. De With, A. J Corbijn. Metal Fiber Reinforced Hydroxyapatite Ceramics. J. Mater. Sci., 24 (9), 3411-15 (1989).
Google Scholar
[40]
D. W Richerson, Modern Ceramic Engineering. Second Edition. Marcel Dekker, New York, (1992).
Google Scholar
[41]
R. W Rice. Mechanisms of Toughening in Ceramic Matrix Composites. Ceram. Eng. Sci. Proc., 2 (5-6) 661-81 (1981).
Google Scholar
[42]
K. Xia, T. G Langdon. Review: The Toughening and Strengthening of Ceramic Materials Through Discontinuous Reinforcement. J. Mater. Sci., 29 (20), 5219-31 (1994).
DOI: 10.1007/bf01171532
Google Scholar
[43]
P. E Wang, T. K Chaki. Sintering Behaviour and Mechanical Properties of Hydroxyapatite and Dicalcium Phosphate. J. Mater. Sci. Mater. Med., 4 (2), 150-58 (1993).
DOI: 10.1007/bf00120384
Google Scholar
[44]
K. Kondo, M. Okuyama, H. Ogawa, Y. Abe. Preparation of High-Strength Apatite Ceramics. Am. Ceram. Soc. Bull., 63 (6) C222-3 (1984).
DOI: 10.1111/j.1151-2916.1984.tb19487.x
Google Scholar
[45]
S. R Kim, K. Hirota, F. P Okamura, Y. Hasegawa, S. J Park. Densification of Calcium-Deficient Hydroxyapatite by Hot Isostatic Pressing. J. Ceram. Soc. Japan. Int. Ed., 98 (3), 266-73 (1990).
DOI: 10.2109/jcersj.98.257
Google Scholar
[46]
R. Halouani, D. Bernache-Assolant, E. Champion, A. Ababou. Microstructure and Related Mechanical Properties of Hot Pressed Hydroxyapatite Ceramics. J. Mater. Sci. Mater. Med., 5 (8), 563-68 (1994).
DOI: 10.1007/bf00124890
Google Scholar
[47]
Whisker Technology, Edited by A.P. Levitt, John Wiley & Sons Ltd., Massachusetts, USA, (1970).
Google Scholar
[48]
T. L Starr. Packing Density of Fibre/Powder Blends. Am. Ceram. Soc. Bull., 65 (9) 1293-96 (1986).
Google Scholar
[49]
T. L Starr. Packing Density of Fibre/Powder Blends. Am. Ceram. Soc. Bull., 65 (9) 1293-96 (1986).
Google Scholar
[50]
J. R Porter, F. F Lange, A. H Chokshi. Processing and Creep Performance of SiC-Whisker-Reinforced Al2O3. Am. Ceram. Soc. Bull., 66 (2) 343-47 (1987).
Google Scholar
[51]
T. N Tiegs, P. E Becher. Sintered Al2O3-SiC Whisker Composite. Am. Ceram. Soc. Bull., 67 (12) C267-C269 (1984).
Google Scholar
[52]
R. W Rice. Ceramic Matrix Composite Toughening Mechanisms: An Update. Ceram. Eng. Sci. Proc., 6 (7-8) 589-607 (1985).
Google Scholar