Propagation Algorithm for Solving Optimal Reactive Power Problem

Article Preview

Abstract:

This paper presents a nature inspired heuristic optimization algorithm based on lightning progression called the propagation algorithm (PA) to solve optimal reactive power problem. It is from the imitated natural phenomenon of lightning and the procedure of step frontrunner propagation using the theory of fast particles. Three particle kinds are established to distinguish the transition particles that produce the first step frontrunner population, the space particles that attempt to turn out to be the frontrunner, and the prime particle that epitomize the particle thrilled from best positioned step frontrunner. The proposed PA has been tested in standard IEEE 30,57,118 bus test systems and simulation results show clearly about the better performance of the proposed algorithm in reducing the real power loss with control variables within the limits.

You might also be interested in these eBooks

Info:

Pages:

103-111

Citation:

Online since:

June 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Alsac. O and B. Scott, (1973) Optimal load flow with steady state security, , IEEE Transaction. PAS , pp.745-751.

Google Scholar

[2] Lee K. Y , Paru Y. M, Oritz J. L, (1985) A united approach to optimal real and reactive power dispatch, , IEEE Transactions on power Apparatus and systems, PAS-104 : 1147-1153.

DOI: 10.1109/tpas.1985.323466

Google Scholar

[3] Monticelli. A,M.V. F Pereira , and S. Granville, (1987) Security constrained optimal power flow with post contingency corrective rescheduling, , IEEE Transactions on Power Systems, PWRS-2, No. 1, pp.175-182.

DOI: 10.1109/tpwrs.1987.4335095

Google Scholar

[4] Deeb. N , ShahidehpurS. M, (1990) Linear reactive power optimization in a large power network using the decomposition approach, , IEEE Transactions on power system, 5(2) : 428-435.

DOI: 10.1109/59.54549

Google Scholar

[5] Hobson. E, (1980), Network consrained reactive power control using linear programming, , IEEE Transactions on power systems PAS -99 (4) , pp.868-877.

DOI: 10.1109/tpas.1980.319715

Google Scholar

[6] Lee .K. Y ,Y. M Park , and J. L Oritz, (1993) Fuel –cost optimization for both real and reactive power dispatches, , IEE Proc; 131C, (3), pp.85-93.

Google Scholar

[7] Mangoli.M. K and K.Y. Lee, (1993), Optimal real and reactive power control using linear programming, , Electrical Power System Research , Vol. 26, pp.1-10.

DOI: 10.1016/0378-7796(93)90063-k

Google Scholar

[8] Canizares.C. A,A.C.Z. de Souza and V.H. Quintana , (1996) Comparison of performance indices for detection of proximity to voltage collapse', , vol. 11. no. 3, pp.1441-1450.

DOI: 10.1109/59.535685

Google Scholar

[9] Berizzi.C. Bovo,M. Merlo, andM. Delfanti, (2012), A ga approach to compare orpf objective functions including secondary voltage regulation, , Electric Power Systems Research, vol. 84, no. 1, p.187 – 194.

DOI: 10.1016/j.epsr.2011.11.014

Google Scholar

[10] Roy. P,S. Ghoshal, andS. Thakur, (2012).

Google Scholar

[11] Hu. Z,X. Wang, andG. Taylor, (2010), Stochastic optimal reactive power dispatch: Formulation and solution method, International Journal of Electrical Power and Energy Systems, vol. 32, no. 6, p.615 – 621.

DOI: 10.1016/j.ijepes.2009.11.018

Google Scholar

[12] Eleftherios, Amoiralis, Pavlos, Georgilakis, Marina, Antonios Kladas, (2010) Ant Colony Optimisation solution to distribution transformer planning problem, Internationl Journal of Advanced Intelligence Paradigms , Vol. 2, No. 4, p.316 – 335.

DOI: 10.1504/ijaip.2010.036398

Google Scholar

[13] Berkopec . A (2012), Fast Particles as Initiators of Stepped Leaders in CG and IC Lightnings, Journal of Electrostat, vol. 70, p.462–467.

DOI: 10.1016/j.elstat.2012.07.001

Google Scholar

[14] Tizhoosh.H. R (2005) Opposition-Based Learning: A New Scheme for Machine Intelligence, CIMCA/IAWTIC. p.695–701.

Google Scholar

[15] Wu.Q. H, Cao.Y. J and Wen.J. Y (1998), Optimal reactive power dispatch using an adaptive genetic algorithm, Int.J. Elect. Power Energy Syst. Vol 20. Pp. 563-569.

DOI: 10.1016/s0142-0615(98)00016-7

Google Scholar

[16] Zhao. B, Guo.C. X and Cao.Y. J (2005), Multiagent-based particle swarm optimization approach for optimal reactive power dispatch, IEEE Trans. Power Syst. Vol. 20, no. 2, pp.1070-1078.

DOI: 10.1109/tpwrs.2005.846064

Google Scholar

[17] Mahadevan. K , Kannan.P. S (2010), Comprehensive Learning Particle Swarm Optimization for Reactive Power Dispatch, , Applied Soft Computing, Vol. 10, No. 2, p.641–52.

DOI: 10.1016/j.asoc.2009.08.038

Google Scholar

[18] Khazali.A. H, Kalantar . M (2011), Optimal Reactive Power Dispatch based on Harmony Search Algorithm, , Electrical Power and Energy Systems, Vol. 33, No. 3, p.684–692.

DOI: 10.1016/j.ijepes.2010.11.018

Google Scholar

[19] Sakthivel. S,M. Gayathri,V. Manimozhi, (2013), A Nature Inspired Optimization Algorithm for Reactive Power Control in a Power System, , International Journal of Recent Technology and Engineering, pp.29-33, Vol. 2, Issue-1.

Google Scholar

[20] Chaohua Dai, Weirong Chen, Yunfang Zhu, and Xuexia Zhang, Seeker optimization algorithm for optimal reactive power dispatch, , IEEE Trans. Power Systems, Vol. 24, No. 3, August 2009, pp.1218-1231.

DOI: 10.1109/tpwrs.2009.2021226

Google Scholar

[21] J. R. Gomes and 0. R. Saavedra, Optimal reactive power dispatch using evolutionary computation: Extended algorithms, IEE Proc. -Gener. Transm. Distrib. Vol. 146, No. 6. Nov. (1999).

DOI: 10.1049/ip-gtd:19990683

Google Scholar

[22] IEEE, The IEEE 30-bus test system and the IEEE 118-test system, , (1993), http: /www. ee. washington. edu/trsearch/pstca.

Google Scholar

[23] Jiangtao Cao, Fuli Wang and Ping Li, An Improved Biogeography-based Optimization Algorithm for Optimal Reactive Power Flow, International Journal of Control and Automation Vol. 7, No. 3 (2014), pp.161-176.

DOI: 10.14257/ijca.2014.7.3.16

Google Scholar