[1]
Aiswarya Iyer, S. Jeyalatha and Ronak Sumbaly, DIAGNOSIS OF DIABETES USING CLASSIFICATION MINING TECHNIQUES, International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol. 5, No. 1, January (2015).
DOI: 10.5121/ijdkp.2015.5101
Google Scholar
[2]
Xin-She Yang, Bat Algorithm: Literature Review and Applications, International Journal of Bio-Inspired Computation, Vol. 5, No. 3, p.141–149 (2013).
Google Scholar
[3]
Sashikala Mishra, Kailash Shaw, Debahuti Mishra, A New Meta-heuristic Bat Inspired Classification Approach for Microarray Data, SciVerse ScienceDirect, Procedia Tecgnology 4 (2012) pp.802-806.
DOI: 10.1016/j.protcy.2012.05.131
Google Scholar
[4]
AhmedMajid Taha, Aida Mustapha, and Soong-Der Chen, Naive Bayes-Guided Bat Algorithm for Feature Selection, Hindawi Publishing Corporation, The ScientificWorld Journal. Volume (2013).
DOI: 10.1155/2013/325973
Google Scholar
[5]
Xin-She Yang. Amir Hossein Gandomi, Bat algorithm: a novel approach for global engineering optimization, Engineering Computations: International Journal for Computer-Aided Engineering and Software Vol. 29 No. 5, (2012).
DOI: 10.1108/02644401211235834
Google Scholar
[6]
Goutam Das, Bat algorithm based Softcomputing Approach to Perceive Hairline Bone Fracture in Medical X-ray Images, International Journal of Computer Science & Engineering Technology (IJCSET), Vol. 4 No. 04 Apr (2013).
Google Scholar
[7]
Iztok Fister, Iztok Fister Jr, Xin-She Yang, Janez Brest, A comprehensive review of firefly algorithms, Swarm and Evolutionary Computation, Volume 13, December 2013, Pages 34–46.
DOI: 10.1016/j.swevo.2013.06.001
Google Scholar
[8]
Tahereh Hassanzadeh, Mohammad Reza Meybodi, A New Hybrid Approach for Data Clustering using Firefly Algorithm and K-means, The 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP 2012).
DOI: 10.1109/aisp.2012.6313708
Google Scholar
[9]
V.P. Archana Linnet Hailey, N. Sudha, An Optimization Approach of Firefly Algorithm to Record Deduplication, International Journal of Engineering Research & Technology (IJERT), Vol. 2 Issue 9, September – (2013).
Google Scholar
[10]
Ehsan Sadeghipour, Nasrollah Sahragard, Mahmood-Reza Sayebani and Rahman mahdizadeh, BREAST CANCER DETECTION BASED ON A HYBRID APPROACH OF FIREFLY ALGORITHM AND INTELLIGENT SYSTEMS, Indian Journal of Fundamental and Applied Life Sciences, 2015 Vol. 5 (S1), pp.468-472.
Google Scholar
[11]
Sarac E. , Ozel S.A. , Web page classification using firefly optimization, Innovations in Intelligent Systems and Applications (INISTA), 2013 IEEE International Symposium.
DOI: 10.1109/inista.2013.6577619
Google Scholar
[12]
Xin-She Yang and Xingshi He, (2013). Firefly Algorithm: Recent Advances and Applications, Int. J. Swarm Intelligence, Vol. 1, No. 1, p.36–50. DOI: 10. 1504/IJSI. 2013. 055801.
DOI: 10.1504/ijsi.2013.055801
Google Scholar
[13]
Xin-She Yang , Firefly Algorithm, Levy Flights and Global Optimization, Research and Development in Intelligent Systems XXVI, DOI 10. 1007/978-1-84882-983-1_15, © Springer-Verlag London Limited (2010).
Google Scholar
[14]
Saibal K. Pal , C. S Rai , Amrit Pal Singh , Comparative Study of Firefly Algorithm and Particle Swarm Optimization for Noisy NonLinear Optimization Problems, I.J. Intelligent Systems and Applications, 2012, 10, 50-57.
DOI: 10.5815/ijisa.2012.10.06
Google Scholar
[15]
Theofanis Apostolopoulos and Aristidis Vlachos, Application of the Firefly Algorithm for Solving the Economic Emissions Load Dispatch Problem, Hindawi Publishing Corporation International Journal of Combinatorics Volume (2011).
DOI: 10.1155/2011/523806
Google Scholar
[16]
Hema Banati and Monika Bajaj, Fire Fly Based Feature Selection Approach, IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 4, No 2, July (2011).
Google Scholar
[17]
A. R. Webb, Statistical Pattern Recognition. John Wiley & Sons, (2003).
Google Scholar
[18]
A. K. Jain et al., Statistical pattern recognition: a review, IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1, pp.4-37, Jan (2000).
Google Scholar
[19]
N. Kwak and C. H. Choi, Input feature selection by mutual information based on Parzen window, IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 12, pp.1667-1671, Dec (2002).
DOI: 10.1109/tpami.2002.1114861
Google Scholar
[20]
P. Langley, Selection of relevant features in machine learning. Defense Technical Information Center, (1994).
Google Scholar
[21]
R. Kohavi, and G. John, Wrapper for feature subset selection, Artificial Intell., vol. 97, no. 1, pp.273-324, (1997).
DOI: 10.1016/s0004-3702(97)00043-x
Google Scholar
[22]
Kalyani Mali and Samayita Bhattacharya, Soft Computing on Medical-Data (SCOM) for a Countrywide Medical System using Data Mining and Cloud Computing Features, Global Journal of Computer Science and Technology Cloud and Distributed, vol. 13, no. 3, (2013).
DOI: 10.26634/jse.7.1.1962
Google Scholar
[23]
Divya and S. Agarwal, Weighted support vector regression approach for remote healthcare monitoring, in Proc. IEEE Int. Conf. on Recent Trends in Inform. Technology, 2011, pp.969-974.
DOI: 10.1109/icrtit.2011.5972437
Google Scholar
[24]
Wolberg W-H, Street W-N, Mangasarian, Machine learning techniques to diagnose breast cancer from fine-needle aspirates, Cancer Lett., vol. 77, (1994).
DOI: 10.1016/0304-3835(94)90099-x
Google Scholar
[25]
Kurgan, Cios, Tadeusiewicz, Ogiela, Goodenday, Knowledge discovery approach to automated cardiac SPECT diagnosis, Artificial Intelligence in Medicine, vol. 23pp. 49–69, (2001).
DOI: 10.1016/s0933-3657(01)00082-3
Google Scholar
[26]
Antoniadis A, Lambert-Lacroix S, Leblanc F. Effective dimension reduction methods for tumor classification using gene expression data, Bioinformatics, vol. 19, no. 5, 563–70, (2003).
DOI: 10.1093/bioinformatics/btg062
Google Scholar
[27]
I. Guyon, J. Weston, S. Barnhill, V. Vapnik, "Gene selection for cancer classification using support vector machines. Machine Learning, vol. 46, p.389–422, (2002).
DOI: 10.1023/a:1012487302797
Google Scholar
[28]
Yu J-S, Ongarello S, Fiedler R, Chen X-W, Toffolo G, Cobelli C, Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data, Bioinformatics, (2005).
DOI: 10.1093/bioinformatics/bti370
Google Scholar
[29]
P. Cunningham, J.G. Carney, Diversity versus quality in classification ensembles based on feature selection, 11th European Conference on Machine Learning (2000).
DOI: 10.1007/3-540-45164-1_12
Google Scholar
[30]
Jollife, I. T. Principal Component Analysis, Springer-Verlag, New York. (1986).
Google Scholar
[31]
M. I. Schmidt et al., Detection of undiagnosed diabetes and other hyperglycemia states: the atherosclerosis risk in communities study, Diabetes Care, vol. 26, no. 5, p.1338– 1343, (2003).
Google Scholar
[32]
P.W. Wilson et al., Prediction of incident diabetes mellitus in middleaged adults: the Framingham offspring study, Archives of Internal Medicine, vol. 167, no. 10, pp.1068-1074, (2007).
DOI: 10.1001/archinte.167.10.1068
Google Scholar
[33]
J. Han and M. Kamber, Data Mining: Concepts and Techniques, 3rd ed. Morgan kaufmann, (2011).
Google Scholar
[34]
D. Delen et al., Predicting breast cancer survivability: a comparison of three data mining methods, Artificial Intell. in Medicine, vol. 34, no. 2, pp.113-127, (2005).
DOI: 10.1016/j.artmed.2004.07.002
Google Scholar
[35]
N. Rathore et al., Predicting the survivability of breast cancer patients using ensemble approach, in Proc. IEEE Int. Conf. Issues and Challenges in Intelligent Computing Techniques, 2014, pp.459-464.
DOI: 10.1109/icicict.2014.6781326
Google Scholar
[36]
P. Herron, Machine learning for medical decision support: evaluating diagnostic performance of machine learning classification algorithms, INLS 110, Data Mining, (2004).
Google Scholar
[37]
J. C. Prather et al., Medical data mining: knowledge discovery in a clinical data warehouse, in Proc. American Medical Informatics Association Annu. fall Symp., 1997, pp.101-105.
Google Scholar
[38]
S. B. Patil and Y. S. Kumaraswamy, Intelligent and effective heart attack prediction system using data mining and artificial neural network, European J. Scientific Research, vol. 31, no. 4, pp.642-656, (2009).
Google Scholar
[39]
G. Richards et al., Data mining for indicators of early mortality in a database of clinical records, Artificial Intell. in Medicine, vol. 22, no. 3, pp.215-231, (2001).
DOI: 10.1016/s0933-3657(00)00110-x
Google Scholar
[40]
S. W. Fei, Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine, Expert Syst. With Applicat., vol. 37, no. 10, pp.6748-6752, (2010).
DOI: 10.1016/j.eswa.2010.02.126
Google Scholar
[41]
J. Han and M. Kamber, Data Mining: Concepts and Techniques, 3rd ed. Morgan kaufmann, (2011).
Google Scholar
[42]
D. Delen et al., Predicting breast cancer survivability: a comparison of three data mining methods, Artificial Intell. in Medicine, vol. 34, no. 2, pp.113-127, (2005).
DOI: 10.1016/j.artmed.2004.07.002
Google Scholar
[43]
H. Jianchao et al., Diabetes data analysis and prediction model discovery using RapidMiner, in Proc. 2nd IEEE Int. Conf. Future Generation Commun. and Networking, 2008, vol. 3, pp.96-99.
Google Scholar
[44]
Ning Wang, Guixia Kang, A monitoring system for type 2 diabetes mellitus, IEEE 14th International Conference on e-Health Networking, Applications and Services (Healthcom) (2012).
DOI: 10.1109/healthcom.2012.6380067
Google Scholar
[45]
N. Rathore et al., Predicting the survivability of breast cancer patients using ensemble approach, in Proc. IEEE Int. Conf. Issues and Challenges in Intelligent Computing Techniques, 2014, pp.459-464.
DOI: 10.1109/icicict.2014.6781326
Google Scholar
[46]
H. Liu and H. Motoda, Feature Selection for Knowledge Discovery and Data Mining. Springer, Boston: Kluwer Academic Publishers, (1998).
Google Scholar
[47]
H. Jianchao et al., Diabetes data analysis and prediction model discovery using RapidMiner, in Proc. 2nd IEEE Int. Conf. Future Generation Commun. and Networking, 2008, vol. 3, pp.96-99.
Google Scholar
[48]
Nahla H. Barakat, Andrew P. Bradley, Senior Member, IEEE, and Mohamed Nabil H. Barakat", Intelligible Support Vector Machines for Diagnosis of Diabetes Mellitus", Information Technology in Biomedicine, IEEE Transactions (2010).
DOI: 10.1109/titb.2009.2039485
Google Scholar
[49]
Qing Ang, ZhiWen Liu, Weidong Wang, Kaiyuan Li, Explored research on data pre-processing and mining technology for clinical data applications, The 2nd IEEE International Conference on Information Management and Engineering (ICIME), (2010).
DOI: 10.1109/icime.2010.5477660
Google Scholar
[50]
N. Yuvaraj and P. Vivekanandan, An Efficient SVM based Tumor Classification with Symmetry Non-Negative Matrix Factorization Using Gene Expression Data, Information Communication and Embedded Systems, p.761 – 768, (2013).
DOI: 10.1109/icices.2013.6508193
Google Scholar
[51]
B. Dennis, S. Muthukrishnan, AGFS: Adaptive Genetic Fuzzy System for medical data classification, Applied Soft Computing, Vol. 25, pp.242-252, (2014).
DOI: 10.1016/j.asoc.2014.09.032
Google Scholar
[52]
X. S. Yang, A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative Strategies for Optimization, (NISCO 2010) (Eds. J. R. Gonzalez et al. ), Studies in Computational Intelligence, Springer Berlin, 284, Springer, 65-74 (2010).
DOI: 10.1007/978-3-642-12538-6_6
Google Scholar
[53]
Yang, X. S. (2009). Firefly algorithms for multimodal optimization, Stochastic Algorithms: Foundations and Applications, SAGA 2009. Lecture Notes in Computer Sciences 5792. p.169–178.
DOI: 10.1007/978-3-642-04944-6_14
Google Scholar
[54]
H, B. Sandya, P. Hemanth Kumar, Himanshi Bhudiraja and Susham K. Rao, Fuzzy Rule Based Feature Extraction and Classification of Time Series Signal, International Journal of Soft Computing and Engineering (IJSCE), (2013).
Google Scholar
[55]
X. He and P. Niyogi, Locality preserving projections, In Advances in Neural Information Processing Systems Cambridge, MA: MIT Press, (2003).
Google Scholar
[56]
K. Srinivas, G. Raghavendra Rao and A. Govardhan, Rough-Fuzzy Classifier: A System to Predict the Heart Disease by Blending Two Different Set Theories, Research article - computer engineering and computer science, (2014).
DOI: 10.1007/s13369-013-0934-1
Google Scholar
[57]
R.S. Parpinelli and H.S. Lopes, New inspirations in swarm intelligence: a survey, International Journal of Bio-Inspired Computation, vol. 3, p.1–16, (2011).
DOI: 10.1504/ijbic.2011.038700
Google Scholar
[58]
Jun, L., Liheng, L., & Xianyi, W. (2015). A double-subpopulation variant of the bat algorithm,. Applied Mathematics and Computation, 263, 361-377.
DOI: 10.1016/j.amc.2015.04.034
Google Scholar
[59]
Meng, X. B., Gao, X. Z., Liu, Y., & Zhang, H. (2015). A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization,. Expert Systems with Applications, 42(17), 6350-6364.
DOI: 10.1016/j.eswa.2015.04.026
Google Scholar
[60]
Yılmaz, S., & Küçüksille, E. U. (2015). A new modification approach on bat algorithm for solving optimization problems, Applied Soft Computing, 28, 259-275.
DOI: 10.1016/j.asoc.2014.11.029
Google Scholar
[61]
Isola, R., Carvalho, R., & Tripathy, A. K. (2012). Knowledge Discovery in Medical Systems Using Differential Diagnosis, LAMSTAR, and-NN, Information Technology in Biomedicine, IEEE Transactions on, 16(6), 1287-1295.
DOI: 10.1109/titb.2012.2215044
Google Scholar
[62]
Nie, L., Zhao, Y. L., Akbari, M., Shen, J., & Chua, T. S. (2015). Bridging the vocabulary gap between health seekers and healthcare knowledge,. Knowledge and Data Engineering, IEEE Transactions on, 27(2), 396-409.
DOI: 10.1109/tkde.2014.2330813
Google Scholar
[63]
Nie, L., Wang, M., Zhang, L., Yan, S., Zhang, B., & Chua, T. S. (2015). Disease inference from health-related questions via sparse deep learning,. Knowledge and Data Engineering, IEEE Transactions on, 27(8), 2107-2119.
DOI: 10.1109/tkde.2015.2399298
Google Scholar