[1]
D. Li and D. Yu, Deep Learning: Methods and Applications, Foundations and Trends in Signal Processing, Now Publishers, (2014).
Google Scholar
[2]
Y. Bengio, Learning deep architectures for AI, Foundations and trends® in Machine Learning, vol. 2, pp.1-127, (2009).
DOI: 10.1561/2200000006
Google Scholar
[3]
Y. Bengio, A. Courville, and P. Vincent, Representation learning: A review and new perspectives, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 35, pp.1798-1828, (2013).
DOI: 10.1109/tpami.2013.50
Google Scholar
[4]
J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, vol. 61, pp.85-117, (2015).
DOI: 10.1016/j.neunet.2014.09.003
Google Scholar
[5]
Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol. 521, pp.436-444, (2015).
DOI: 10.1038/nature14539
Google Scholar
[6]
I. Arel, D. C. Rose, and T. P. Karnowski, Deep machine learning-a new frontier in artificial intelligence research [research frontier], Computational Intelligence Magazine, IEEE, vol. 5, pp.13-18, (2010).
DOI: 10.1109/mci.2010.938364
Google Scholar
[7]
P. O. Glauner, Deep Convolutional Neural Networks for Smile Recognition, arXiv preprint arXiv: 1508. 06535, (2015).
Google Scholar
[8]
H. A. Song and S. -Y. Lee, Hierarchical Representation Using NMF, in Neural Information Processing, 2013, pp.466-473.
Google Scholar
[9]
M. Xiong, J. Chen, Z. Wang, C. Liang, Q. Zheng, Z. Han, et al., Deep Feature Representation via Multiple Stack Auto-Encoders, in Advances in Multimedia Information Processing-PCM 2015, ed: Springer, 2015, pp.275-284.
DOI: 10.1007/978-3-319-24075-6_27
Google Scholar
[10]
B. A. Olshausen, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, vol. 381, pp.607-609, (1996).
DOI: 10.1038/381607a0
Google Scholar
[11]
R. Collobert, Deep learning for efficient discriminative parsing, in International Conference on Artificial Intelligence and Statistics, (2011).
Google Scholar
[12]
L. Gomes, Machine-learning maestro michael jordan on the delusions of big data and other huge engineering efforts, IEEE Spectrum, Oct, vol. 20, (2014).
Google Scholar
[13]
G. E. Hinton, S. Osindero, and Y. -W. Teh, A fast learning algorithm for deep belief nets, Neural computation, vol. 18, pp.1527-1554, (2006).
DOI: 10.1162/neco.2006.18.7.1527
Google Scholar
[14]
R. Salakhutdinov and G. Hinton, An efficient learning procedure for deep Boltzmann machines, Neural computation, vol. 24, pp.1967-2006, (2012).
DOI: 10.1162/neco_a_00311
Google Scholar
[15]
D. H. Staelin and C. H. Staelin, Models for Neural Spike Computation and Cognition, ed: CreateSpace. [Links], (2011).
Google Scholar
[16]
N. Kriegeskorte, Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing, Annual Review of Vision Science, vol. 1, pp.417-446, (2015).
DOI: 10.1146/annurev-vision-082114-035447
Google Scholar
[17]
S. Bengio, L. Deng, H. Larochelle, H. Lee, and R. Salakhutdinov, Guest Editors' Introduction: Special Section on Learning Deep Architectures, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 35, pp.1795-1797, (2013).
DOI: 10.1109/tpami.2013.118
Google Scholar
[18]
A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in neural information processing systems, 2012, pp.1097-1105.
DOI: 10.1145/3065386
Google Scholar
[19]
E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ORB: an efficient alternative to SIFT or SURF, in Computer Vision (ICCV), 2011 IEEE International Conference on, 2011, pp.2564-2571.
DOI: 10.1109/iccv.2011.6126544
Google Scholar
[20]
B. C. Csáji, Approximation with artificial neural networks, Faculty of Sciences, Etvs Lornd University, Hungary, vol. 24, (2001).
Google Scholar
[21]
G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of control, signals and systems, vol. 2, pp.303-314, (1989).
DOI: 10.1007/bf02551274
Google Scholar
[22]
K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural networks, vol. 4, pp.251-257, (1991).
DOI: 10.1016/0893-6080(91)90009-t
Google Scholar
[23]
S. Haykin and R. Lippmann, Neural Networks, A Comprehensive Foundation, International Journal of Neural Systems, vol. 5, pp.363-364, (1994).
DOI: 10.1142/s0129065794000372
Google Scholar
[24]
M. H. Hassoun, Fundamentals of artificial neural networks: MIT press, (1995).
Google Scholar
[25]
K. P. Murphy, Machine learning: a probabilistic perspective: MIT press, (2012).
Google Scholar
[26]
G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, arXiv preprint arXiv: 1207. 0580, (2012).
Google Scholar
[27]
Y. Bengio, Deep learning of representations: Looking forward, in Statistical language and speech processing, ed: Springer, 2013, pp.1-37.
DOI: 10.1007/978-3-642-39593-2_1
Google Scholar
[28]
A. Testolin, I. Stoianov, M. De Filippo De Grazia, and M. Zorzi, Deep unsupervised learning on a desktop PC: a primer for cognitive scientists, Front. Psychol, vol. 4, p.10. 3389, (2013).
DOI: 10.3389/fpsyg.2013.00251
Google Scholar
[29]
A. Weapons, an Open Letter from AI & Robotics Researchers, 2015, ed.
Google Scholar
[30]
C. Szegedy, A. Toshev, and D. Erhan, Deep neural networks for object detection, in Advances in Neural Information Processing Systems, 2013, pp.2553-2561.
Google Scholar
[31]
S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget, Recurrent Neural Network Based Language Modeling in Meeting Recognition, in INTERSPEECH, 2011, pp.2877-2880.
DOI: 10.21437/interspeech.2011-720
Google Scholar
[32]
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol. 86, pp.2278-2324, (1998).
DOI: 10.1109/5.726791
Google Scholar
[33]
T. N. Sainath, A. -r. Mohamed, B. Kingsbury, and B. Ramabhadran, Deep convolutional neural networks for LVCSR, in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013, pp.8614-8618.
DOI: 10.1109/icassp.2013.6639347
Google Scholar
[34]
G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. -r. Mohamed, N. Jaitly, et al., Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, Signal Processing Magazine, IEEE, vol. 29, pp.82-97, (2012).
DOI: 10.1109/msp.2012.2205597
Google Scholar
[35]
Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, Advances in optimizing recurrent networks, in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013, pp.8624-8628.
DOI: 10.1109/icassp.2013.6639349
Google Scholar
[36]
G. E. Dahl, T. N. Sainath, and G. E. Hinton, Improving deep neural networks for LVCSR using rectified linear units and dropout, in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013, pp.8609-8613.
DOI: 10.1109/icassp.2013.6639346
Google Scholar
[37]
G. Hinton, A practical guide to training restricted Boltzmann machines, Momentum, vol. 9, p.926, (2010).
Google Scholar
[38]
G. -B. Huang, Q. -Y. Zhu, and C. -K. Siew, Extreme learning machine: theory and applications, Neurocomputing, vol. 70, pp.489-501, (2006).
DOI: 10.1016/j.neucom.2005.12.126
Google Scholar
[39]
B. Widrow, A. Greenblatt, Y. Kim, and D. Park, The no-prop algorithm: A new learning algorithm for multilayer neural networks, Neural Networks, vol. 37, pp.182-188, (2013).
DOI: 10.1016/j.neunet.2012.09.020
Google Scholar
[40]
Y. Ollivier and G. Charpiat, Training recurrent networks online without backtracking, arXiv preprint arXiv: 1507. 07680, (2015).
Google Scholar
[41]
I. Aleksander, M. De Gregorio, F. M. G. França, P. M. V. Lima, and H. Morton, A brief introduction to Weightless Neural Systems, in ESANN, (2009).
Google Scholar
[42]
G. E. Hinton, Deep belief networks, Scholarpedia, vol. 4, p.5947, (2009).
Google Scholar
[43]
H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, An empirical evaluation of deep architectures on problems with many factors of variation, in Proceedings of the 24th international conference on Machine learning, 2007, pp.473-480.
DOI: 10.1145/1273496.1273556
Google Scholar
[44]
G. E. Hinton, Training products of experts by minimizing contrastive divergence, Neural computation, vol. 14, pp.1771-1800, (2002).
DOI: 10.1162/089976602760128018
Google Scholar
[45]
A. Fischer and C. Igel, Training restricted Boltzmann machines: an introduction, Pattern Recognition, vol. 47, pp.25-39, (2014).
DOI: 10.1016/j.patcog.2013.05.025
Google Scholar
[46]
G. Barnich, H. A. Gonzalez, A. Maloney, and B. Oblak, One loop partition function of three-dimensional flat gravity, Journal of High Energy Physics, vol. 2015, pp.1-8, (2015).
DOI: 10.1007/jhep04(2015)178
Google Scholar
[47]
T. Sercu, C. Puhrsch, B. Kingsbury, and Y. LeCun, Very deep multilingual convolutional neural networks for LVCSR, arXiv preprint arXiv: 1509. 08967, (2015).
DOI: 10.1109/icassp.2016.7472620
Google Scholar
[48]
C. Yan, F. Coenen, and B. Zhang, Driving posture recognition by convolutional neural networks, IET Computer Vision, (2015).
DOI: 10.1049/iet-cvi.2015.0175
Google Scholar
[49]
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., Going deeper with convolutions, arXiv preprint arXiv: 1409. 4842, (2014).
DOI: 10.1109/cvpr.2015.7298594
Google Scholar
[50]
A. Krizhevsky and G. Hinton, Convolutional deep belief networks on cifar-10, Unpublished manuscript, (2010).
Google Scholar
[51]
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp.609-616.
DOI: 10.1145/1553374.1553453
Google Scholar
[52]
Y. LeCun, The MNIST database of handwritten digits. {Online}, ed, (2007).
Google Scholar
[53]
B. Kwolek, Face detection using convolutional neural networks and Gabor filters, in Artificial Neural Networks: Biological Inspirations–ICANN 2005, ed: Springer, 2005, pp.551-556.
DOI: 10.1007/11550822_86
Google Scholar
[54]
M. Osadchy, Y. L. Cun, and M. L. Miller, Synergistic face detection and pose estimation with energy-based models, The Journal of Machine Learning Research, vol. 8, pp.1197-1215, (2007).
Google Scholar
[55]
S. Sukittanon, A. C. Surendran, J. C. Platt, and C. J. Burges, Convolutional networks for speech detection, in Interspeech, (2004).
DOI: 10.21437/interspeech.2004-376
Google Scholar
[56]
F. J. Huang and Y. LeCun, Large-scale learning with svm and convolutional for generic object categorization, in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, 2006, pp.284-291.
DOI: 10.1109/cvpr.2006.164
Google Scholar
[57]
H. Lee, P. Pham, Y. Largman, and A. Y. Ng, Unsupervised feature learning for audio classification using convolutional deep belief networks, in Advances in neural information processing systems, 2009, pp.1096-1104.
Google Scholar
[58]
T. Khorshed, Research Problem Definition Part.
Google Scholar
[59]
I. Lenz, H. Lee, and A. Saxena, Deep learning for detecting robotic grasps, The International Journal of Robotics Research, vol. 34, pp.705-724, (2015).
DOI: 10.1177/0278364914549607
Google Scholar
[60]
K. Kavukcuoglu, M. A. Ranzato, R. Fergus, and Y. Le-Cun, Learning invariant features through topographic filter maps, in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 2009, pp.1605-1612.
DOI: 10.1109/cvpr.2009.5206545
Google Scholar
[61]
B. B. Benuwa, B. Ghansah, D. K. Wornyo, and S. A. Adabunu, A Comprehensive Review of Particle Swarm Optimization, in International Journal of Engineering Research in Africa, 2016, pp.141-161.
DOI: 10.4028/www.scientific.net/jera.23.141
Google Scholar
[62]
J. Weston, F. Ratle, H. Mobahi, and R. Collobert, Deep learning via semi-supervised embedding, in Neural Networks: Tricks of the Trade, ed: Springer, 2012, pp.639-655.
DOI: 10.1007/978-3-642-35289-8_34
Google Scholar
[63]
K. A. De Jong, Evolving intelligent agents: A 50 year quest, IEEE Computational Intelligence Magazine, vol. 1, pp.12-17, (2008).
DOI: 10.1109/mci.2007.913370
Google Scholar
[64]
M. M. Islam and X. Yao, Evolving artificial neural network ensembles, in Computational intelligence: a compendium, ed: Springer, 2008, pp.851-880.
DOI: 10.1007/978-3-540-78293-3_20
Google Scholar
[65]
S. V. Rice, F. R. Jenkins, and T. A. Nartker, The fifth annual test of OCR accuracy: Information Science Research Institute, (1996).
Google Scholar
[66]
E. M. Newton and P. J. Phillips, Meta-analysis of third-party evaluations of iris recognition, Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol. 39, pp.4-11, (2009).
DOI: 10.1109/tsmca.2008.2008210
Google Scholar
[67]
A. Adler and M. E. Schuckers, Comparing human and automatic face recognition performance, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 37, pp.1248-1255, (2007).
DOI: 10.1109/tsmcb.2007.907036
Google Scholar