A Review of Deep Machine Learning

Article Preview

Abstract:

The rapid increase of information and accessibility in recent years has activated a paradigm shift in algorithm design for artificial intelligence. Recently, deep learning (a surrogate of Machine Learning) have won several contests in pattern recognition and machine learning. This review comprehensively summarises relevant studies, much of it from prior state-of-the-art techniques. This paper also discusses the motivations and principles regarding learning algorithms for deep architectures.

You might also be interested in these eBooks

Info:

Pages:

124-136

Citation:

Online since:

June 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Li and D. Yu, Deep Learning: Methods and Applications, Foundations and Trends in Signal Processing, Now Publishers, (2014).

Google Scholar

[2] Y. Bengio, Learning deep architectures for AI, Foundations and trends® in Machine Learning, vol. 2, pp.1-127, (2009).

DOI: 10.1561/2200000006

Google Scholar

[3] Y. Bengio, A. Courville, and P. Vincent, Representation learning: A review and new perspectives, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 35, pp.1798-1828, (2013).

DOI: 10.1109/tpami.2013.50

Google Scholar

[4] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks, vol. 61, pp.85-117, (2015).

DOI: 10.1016/j.neunet.2014.09.003

Google Scholar

[5] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol. 521, pp.436-444, (2015).

DOI: 10.1038/nature14539

Google Scholar

[6] I. Arel, D. C. Rose, and T. P. Karnowski, Deep machine learning-a new frontier in artificial intelligence research [research frontier], Computational Intelligence Magazine, IEEE, vol. 5, pp.13-18, (2010).

DOI: 10.1109/mci.2010.938364

Google Scholar

[7] P. O. Glauner, Deep Convolutional Neural Networks for Smile Recognition, arXiv preprint arXiv: 1508. 06535, (2015).

Google Scholar

[8] H. A. Song and S. -Y. Lee, Hierarchical Representation Using NMF, in Neural Information Processing, 2013, pp.466-473.

Google Scholar

[9] M. Xiong, J. Chen, Z. Wang, C. Liang, Q. Zheng, Z. Han, et al., Deep Feature Representation via Multiple Stack Auto-Encoders, in Advances in Multimedia Information Processing-PCM 2015, ed: Springer, 2015, pp.275-284.

DOI: 10.1007/978-3-319-24075-6_27

Google Scholar

[10] B. A. Olshausen, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, vol. 381, pp.607-609, (1996).

DOI: 10.1038/381607a0

Google Scholar

[11] R. Collobert, Deep learning for efficient discriminative parsing, in International Conference on Artificial Intelligence and Statistics, (2011).

Google Scholar

[12] L. Gomes, Machine-learning maestro michael jordan on the delusions of big data and other huge engineering efforts, IEEE Spectrum, Oct, vol. 20, (2014).

Google Scholar

[13] G. E. Hinton, S. Osindero, and Y. -W. Teh, A fast learning algorithm for deep belief nets, Neural computation, vol. 18, pp.1527-1554, (2006).

DOI: 10.1162/neco.2006.18.7.1527

Google Scholar

[14] R. Salakhutdinov and G. Hinton, An efficient learning procedure for deep Boltzmann machines, Neural computation, vol. 24, pp.1967-2006, (2012).

DOI: 10.1162/neco_a_00311

Google Scholar

[15] D. H. Staelin and C. H. Staelin, Models for Neural Spike Computation and Cognition, ed: CreateSpace. [Links], (2011).

Google Scholar

[16] N. Kriegeskorte, Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing, Annual Review of Vision Science, vol. 1, pp.417-446, (2015).

DOI: 10.1146/annurev-vision-082114-035447

Google Scholar

[17] S. Bengio, L. Deng, H. Larochelle, H. Lee, and R. Salakhutdinov, Guest Editors' Introduction: Special Section on Learning Deep Architectures, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 35, pp.1795-1797, (2013).

DOI: 10.1109/tpami.2013.118

Google Scholar

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in neural information processing systems, 2012, pp.1097-1105.

DOI: 10.1145/3065386

Google Scholar

[19] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, ORB: an efficient alternative to SIFT or SURF, in Computer Vision (ICCV), 2011 IEEE International Conference on, 2011, pp.2564-2571.

DOI: 10.1109/iccv.2011.6126544

Google Scholar

[20] B. C. Csáji, Approximation with artificial neural networks, Faculty of Sciences, Etvs Lornd University, Hungary, vol. 24, (2001).

Google Scholar

[21] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of control, signals and systems, vol. 2, pp.303-314, (1989).

DOI: 10.1007/bf02551274

Google Scholar

[22] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural networks, vol. 4, pp.251-257, (1991).

DOI: 10.1016/0893-6080(91)90009-t

Google Scholar

[23] S. Haykin and R. Lippmann, Neural Networks, A Comprehensive Foundation, International Journal of Neural Systems, vol. 5, pp.363-364, (1994).

DOI: 10.1142/s0129065794000372

Google Scholar

[24] M. H. Hassoun, Fundamentals of artificial neural networks: MIT press, (1995).

Google Scholar

[25] K. P. Murphy, Machine learning: a probabilistic perspective: MIT press, (2012).

Google Scholar

[26] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, arXiv preprint arXiv: 1207. 0580, (2012).

Google Scholar

[27] Y. Bengio, Deep learning of representations: Looking forward, in Statistical language and speech processing, ed: Springer, 2013, pp.1-37.

DOI: 10.1007/978-3-642-39593-2_1

Google Scholar

[28] A. Testolin, I. Stoianov, M. De Filippo De Grazia, and M. Zorzi, Deep unsupervised learning on a desktop PC: a primer for cognitive scientists, Front. Psychol, vol. 4, p.10. 3389, (2013).

DOI: 10.3389/fpsyg.2013.00251

Google Scholar

[29] A. Weapons, an Open Letter from AI & Robotics Researchers, 2015, ed.

Google Scholar

[30] C. Szegedy, A. Toshev, and D. Erhan, Deep neural networks for object detection, in Advances in Neural Information Processing Systems, 2013, pp.2553-2561.

Google Scholar

[31] S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget, Recurrent Neural Network Based Language Modeling in Meeting Recognition, in INTERSPEECH, 2011, pp.2877-2880.

DOI: 10.21437/interspeech.2011-720

Google Scholar

[32] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol. 86, pp.2278-2324, (1998).

DOI: 10.1109/5.726791

Google Scholar

[33] T. N. Sainath, A. -r. Mohamed, B. Kingsbury, and B. Ramabhadran, Deep convolutional neural networks for LVCSR, in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013, pp.8614-8618.

DOI: 10.1109/icassp.2013.6639347

Google Scholar

[34] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. -r. Mohamed, N. Jaitly, et al., Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, Signal Processing Magazine, IEEE, vol. 29, pp.82-97, (2012).

DOI: 10.1109/msp.2012.2205597

Google Scholar

[35] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, Advances in optimizing recurrent networks, in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013, pp.8624-8628.

DOI: 10.1109/icassp.2013.6639349

Google Scholar

[36] G. E. Dahl, T. N. Sainath, and G. E. Hinton, Improving deep neural networks for LVCSR using rectified linear units and dropout, in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, 2013, pp.8609-8613.

DOI: 10.1109/icassp.2013.6639346

Google Scholar

[37] G. Hinton, A practical guide to training restricted Boltzmann machines, Momentum, vol. 9, p.926, (2010).

Google Scholar

[38] G. -B. Huang, Q. -Y. Zhu, and C. -K. Siew, Extreme learning machine: theory and applications, Neurocomputing, vol. 70, pp.489-501, (2006).

DOI: 10.1016/j.neucom.2005.12.126

Google Scholar

[39] B. Widrow, A. Greenblatt, Y. Kim, and D. Park, The no-prop algorithm: A new learning algorithm for multilayer neural networks, Neural Networks, vol. 37, pp.182-188, (2013).

DOI: 10.1016/j.neunet.2012.09.020

Google Scholar

[40] Y. Ollivier and G. Charpiat, Training recurrent networks online without backtracking, arXiv preprint arXiv: 1507. 07680, (2015).

Google Scholar

[41] I. Aleksander, M. De Gregorio, F. M. G. França, P. M. V. Lima, and H. Morton, A brief introduction to Weightless Neural Systems, in ESANN, (2009).

Google Scholar

[42] G. E. Hinton, Deep belief networks, Scholarpedia, vol. 4, p.5947, (2009).

Google Scholar

[43] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, An empirical evaluation of deep architectures on problems with many factors of variation, in Proceedings of the 24th international conference on Machine learning, 2007, pp.473-480.

DOI: 10.1145/1273496.1273556

Google Scholar

[44] G. E. Hinton, Training products of experts by minimizing contrastive divergence, Neural computation, vol. 14, pp.1771-1800, (2002).

DOI: 10.1162/089976602760128018

Google Scholar

[45] A. Fischer and C. Igel, Training restricted Boltzmann machines: an introduction, Pattern Recognition, vol. 47, pp.25-39, (2014).

DOI: 10.1016/j.patcog.2013.05.025

Google Scholar

[46] G. Barnich, H. A. Gonzalez, A. Maloney, and B. Oblak, One loop partition function of three-dimensional flat gravity, Journal of High Energy Physics, vol. 2015, pp.1-8, (2015).

DOI: 10.1007/jhep04(2015)178

Google Scholar

[47] T. Sercu, C. Puhrsch, B. Kingsbury, and Y. LeCun, Very deep multilingual convolutional neural networks for LVCSR, arXiv preprint arXiv: 1509. 08967, (2015).

DOI: 10.1109/icassp.2016.7472620

Google Scholar

[48] C. Yan, F. Coenen, and B. Zhang, Driving posture recognition by convolutional neural networks, IET Computer Vision, (2015).

DOI: 10.1049/iet-cvi.2015.0175

Google Scholar

[49] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., Going deeper with convolutions, arXiv preprint arXiv: 1409. 4842, (2014).

DOI: 10.1109/cvpr.2015.7298594

Google Scholar

[50] A. Krizhevsky and G. Hinton, Convolutional deep belief networks on cifar-10, Unpublished manuscript, (2010).

Google Scholar

[51] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp.609-616.

DOI: 10.1145/1553374.1553453

Google Scholar

[52] Y. LeCun, The MNIST database of handwritten digits. {Online}, ed, (2007).

Google Scholar

[53] B. Kwolek, Face detection using convolutional neural networks and Gabor filters, in Artificial Neural Networks: Biological Inspirations–ICANN 2005, ed: Springer, 2005, pp.551-556.

DOI: 10.1007/11550822_86

Google Scholar

[54] M. Osadchy, Y. L. Cun, and M. L. Miller, Synergistic face detection and pose estimation with energy-based models, The Journal of Machine Learning Research, vol. 8, pp.1197-1215, (2007).

Google Scholar

[55] S. Sukittanon, A. C. Surendran, J. C. Platt, and C. J. Burges, Convolutional networks for speech detection, in Interspeech, (2004).

DOI: 10.21437/interspeech.2004-376

Google Scholar

[56] F. J. Huang and Y. LeCun, Large-scale learning with svm and convolutional for generic object categorization, in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, 2006, pp.284-291.

DOI: 10.1109/cvpr.2006.164

Google Scholar

[57] H. Lee, P. Pham, Y. Largman, and A. Y. Ng, Unsupervised feature learning for audio classification using convolutional deep belief networks, in Advances in neural information processing systems, 2009, pp.1096-1104.

Google Scholar

[58] T. Khorshed, Research Problem Definition Part.

Google Scholar

[59] I. Lenz, H. Lee, and A. Saxena, Deep learning for detecting robotic grasps, The International Journal of Robotics Research, vol. 34, pp.705-724, (2015).

DOI: 10.1177/0278364914549607

Google Scholar

[60] K. Kavukcuoglu, M. A. Ranzato, R. Fergus, and Y. Le-Cun, Learning invariant features through topographic filter maps, in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, 2009, pp.1605-1612.

DOI: 10.1109/cvpr.2009.5206545

Google Scholar

[61] B. B. Benuwa, B. Ghansah, D. K. Wornyo, and S. A. Adabunu, A Comprehensive Review of Particle Swarm Optimization, in International Journal of Engineering Research in Africa, 2016, pp.141-161.

DOI: 10.4028/www.scientific.net/jera.23.141

Google Scholar

[62] J. Weston, F. Ratle, H. Mobahi, and R. Collobert, Deep learning via semi-supervised embedding, in Neural Networks: Tricks of the Trade, ed: Springer, 2012, pp.639-655.

DOI: 10.1007/978-3-642-35289-8_34

Google Scholar

[63] K. A. De Jong, Evolving intelligent agents: A 50 year quest, IEEE Computational Intelligence Magazine, vol. 1, pp.12-17, (2008).

DOI: 10.1109/mci.2007.913370

Google Scholar

[64] M. M. Islam and X. Yao, Evolving artificial neural network ensembles, in Computational intelligence: a compendium, ed: Springer, 2008, pp.851-880.

DOI: 10.1007/978-3-540-78293-3_20

Google Scholar

[65] S. V. Rice, F. R. Jenkins, and T. A. Nartker, The fifth annual test of OCR accuracy: Information Science Research Institute, (1996).

Google Scholar

[66] E. M. Newton and P. J. Phillips, Meta-analysis of third-party evaluations of iris recognition, Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol. 39, pp.4-11, (2009).

DOI: 10.1109/tsmca.2008.2008210

Google Scholar

[67] A. Adler and M. E. Schuckers, Comparing human and automatic face recognition performance, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 37, pp.1248-1255, (2007).

DOI: 10.1109/tsmcb.2007.907036

Google Scholar