Overview of Image Quality Metrics with Perspective to Satellite Image Compression

Article Preview

Abstract:

Image Quality appraisal has been an exacting task in the field of image processing without any satisfactory answer so far. Image quality evaluation tries to quantify a visual quality, an amount of distortion in a given picture. These changes are an inescapable component of any digital picture processing. The correct method of valuing the human-perceived visual quality of the images is the assessment by the human beings. Unfortunately, this process is luxurious, time consuming and cannot be applied in real-time applications. Therefore, there is a demand for a computerized technique that would conceive of the human-perceived visual quality as close as possible. This survey presents an overview about different quality metrics used in-order to assess the image degradation. The few metrics studied are MSE, SNR, PSNR, SSIM, AD, MD, MAE, NK, VSNR, RMSE, UIQM, MSSSIM, FSSIM etc. The image quality metrics are verified with perspective to satellite pictures.

You might also be interested in these eBooks

Info:

Pages:

112-123

Citation:

Online since:

June 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Patil, Sejal, and Shubha Sheelvant (2013). Survey on Image Quality Assessment Techniques. International Journal of Science and Research 1756 - 1759.

Google Scholar

[2] Hamilton, J. F. The silver halide photographic process., Advances in Physics 37, no. 4 (1988): 359-441.

DOI: 10.1080/00018738800101399

Google Scholar

[3] Shapiro, Jerome M. Embedded image coding using zerotrees of wavelet coefficients., Signal Processing, IEEE Transactions on 41, no. 12 (1993): 3445-3462.

DOI: 10.1109/78.258085

Google Scholar

[4] Eskicioglu, Ahmet M., and Paul S. Fisher. Image quality measures and their performance., Communications, IEEE Transactions on 43, no. 12 (1995): 2959-2965.

DOI: 10.1109/26.477498

Google Scholar

[5] Wang, Zhou, and Alan C. Bovik. A universal image quality index., Signal Processing Letters, IEEE 9, no. 3 (2002): 81-84.

DOI: 10.1109/97.995823

Google Scholar

[6] Al-Najjar, Yusra AY. Dr. Der Chen Soong, "Comparison of Image Quality Assessment: PSNR, HVS, SSIM, UIQI"., International Journal of Scientific & Engineering Research 3, no. 8 (2012): 1.

Google Scholar

[7] Eskicioglu, Ahmet M., and Paul S. Fisher. A survey of quality measures for gray scale image compression., In NASA Conference Publication, pp.49-49. NASA, (1993).

DOI: 10.2514/6.1993-4514

Google Scholar

[8] Wang, Zhou, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero P. Simoncelli. Image quality assessment: from error visibility to structural similarity., Image Processing, IEEE Transactions on 13, no. 4 (2004): 600-612.

DOI: 10.1109/tip.2003.819861

Google Scholar

[9] Wang, Zhou, and Alan C. Bovik. A universal image quality index., Signal Processing Letters, IEEE 9, no. 3 (2002): 81-84.

DOI: 10.1109/97.995823

Google Scholar

[10] Wang, Zhou, Eero P. Simoncelli, and Alan C. Bovik. Multiscale structural similarity for image quality assessment., In Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on, vol. 2, pp.1398-1402. Ieee, (2003).

DOI: 10.1109/acssc.2003.1292216

Google Scholar

[11] https: /en. wikipedia. org/wiki/Image_quality (on 18/11/15).

Google Scholar

[12] Sheikh, Hamid Rahim, Muhammad Farooq Sabir, and Alan Conrad Bovik. A statistical evaluation of recent full reference image quality assessment algorithms., Image Processing, IEEE Transactions on 15, no. 11 (2006): 3440-3451.

DOI: 10.1109/tip.2006.881959

Google Scholar

[13] Larson, Eric C., and Damon M. Chandler. Most apparent distortion: full-reference image quality assessment and the role of strategy., Journal of Electronic Imaging 19, no. 1 (2010): 011006-011006.

DOI: 10.1117/1.3267105

Google Scholar

[14] ECE, CSE, and Mullana MMU. Image Quality Assessment Techniques pn Spatial Domain., IJCST 2, no. 3 (2011).

Google Scholar

[15] Sanjith, S., Ganesan, R., & Isaac, R. S. (2015). Experimental Analysis of Compacted Satellite Image Quality Using Different Compression Methods. Advanced Science, Engineering and Medicine, 7(3), 227-233.

DOI: 10.1166/asem.2015.1673

Google Scholar

[16] Joseph, Sanjith Sathya, and Ganesan Ramu. Performance Evaluation of Basic Compression Methods for Different Satellite Imagery., Indian Journal of Science and Technology 8, no. 19 (2015).

DOI: 10.17485/ijst/2015/v8i19/61658

Google Scholar

[17] Toprak, Abdullah, and İnan Güler. Impulse noise reduction in medical images with the use of switch mode fuzzy adaptive median filter., Digital signal processing 17, no. 4 (2007): 711-723.

DOI: 10.1016/j.dsp.2006.11.008

Google Scholar

[18] Ganesan, R., and S. Sanjith. Evaluating the Quality of Compression in Very High Resolution Satellite Images Using Different Compression Methods., International Journal of Engineering Research in Africa 19 (2016).

DOI: 10.4028/www.scientific.net/jera.19.91

Google Scholar

[19] Sanjith, S., and R. Ganesan. Determining the Quality of Compression in High Resolution Satellite Images Using Different Compression Methods., In International Journal of Engineering Research in Africa, vol. 20, pp.202-217. Trans Tech Publications, (2015).

DOI: 10.4028/www.scientific.net/jera.20.202

Google Scholar

[20] De Boer, Johannes F., Barry Cense, B. Hyle Park, Mark C. Pierce, Guillermo J. Tearney, and Brett E. Bouma. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography., Optics letters 28, no. 21 (2003).

DOI: 10.1364/ol.28.002067

Google Scholar

[21] Willmott, Cort J., and Kenji Matsuura. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance., Climate research 30, no. 1 (2005): 79.

DOI: 10.3354/cr030079

Google Scholar

[22] Chai, Tianfeng, and Roland R. Draxler. Root mean square error (RMSE) or mean absolute error (MAE) Arguments against avoiding RMSE in the literature., Geoscientific Model Development 7, no. 3 (2014): 1247-1250.

DOI: 10.5194/gmd-7-1247-2014

Google Scholar

[23] Hall, Charles F. Subjective evaluation of a perceptual quality metric., In 25th Annual Technical Symposium, pp.200-204. International Society for Optics and Photonics, (1981).

Google Scholar

[24] Snyder, Harry L. Image quality: Measures and visual performance., In Flat-panel displays and CRTs, pp.70-90. Springer Netherlands, (1985).

DOI: 10.1007/978-94-011-7062-8_4

Google Scholar

[25] Al-Otum, Hazem Munawer. Qualitative and quantitative image quality assessment of vector quantization, JPEG, and JPEG2000 compressed images., Journal of Electronic Imaging 12, no. 3 (2003): 511-521.

DOI: 10.1117/1.1579701

Google Scholar

[26] Wang, Zhou, Ligang Lu, and Alan C. Bovik. Video quality assessment based on structural distortion measurement., Signal processing: Image communication 19, no. 2 (2004): 121-132.

DOI: 10.1016/s0923-5965(03)00076-6

Google Scholar

[27] Willmott, Cort J. On the validation of models., Physical geography 2, no. 2 (1981): 184-194.

Google Scholar

[28] Armstrong, J. Scott, and Fred Collopy. Error measures for generalizing about forecasting methods: Empirical comparisons., International journal of forecasting 8, no. 1 (1992): 69-80.

DOI: 10.1016/0169-2070(92)90008-w

Google Scholar

[29] Gilroy, E. J., R. M. Hirsch, and T. A. Cohn. Mean square error of regression-based constituent transport estimates., Water Resources Research 26, no. 9 (1990): 2069-(2077).

DOI: 10.1029/wr026i009p02069

Google Scholar

[30] Fienup, James R. Invariant error metrics for image reconstruction., Applied optics 36, no. 32 (1997): 8352-8357.

DOI: 10.1364/ao.36.008352

Google Scholar

[31] Tong, Kaiyu, and Malcolm H. Granat. A practical gait analysis system using gyroscopes., Medical engineering & physics 21, no. 2 (1999): 87-94.

DOI: 10.1016/s1350-4533(99)00030-2

Google Scholar

[32] Anan, Deepthi, and U. C. Niranjan. Watermarking medical images with patient information., In Engineering in Medicine and Biology Society, 1998. Proceedings of the 20th Annual International Conference of the IEEE, vol. 2, pp.703-706. IEEE, (1998).

Google Scholar

[33] Guizar-Sicairos, Manuel, Samuel T. Thurman, and James R. Fienup. Efficient subpixel image registration algorithms., Optics letters 33, no. 2 (2008): 156-158.

DOI: 10.1364/ol.33.000156

Google Scholar

[34] Chandler, Damon M., and Sheila S. Hemami. VSNR: A wavelet-based visual signal-to-noise ratio for natural images., Image Processing, IEEE Transactions on 16, no. 9 (2007): 2284-2298.

DOI: 10.1109/tip.2007.901820

Google Scholar

[35] Chandler, Damon M., and Sheila S. Hemami. VSNR: A Visual Signal-to-Noise Ratio for Natural Images Based on Near-Threshold and Suprathreshold Vision.

Google Scholar

[36] Chandler, Damon M., and Sheila S. Hemami. Online Supplement to" VSNR: A Visual Signal-to-Noise Ratio for Natural Images Based on Near-Threshold and Suprathreshold Vision., (2007).

Google Scholar

[37] Mohammed, Doaa, and Fatma Abou-Chadi. Image Compression Using Block Truncation Coding., Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), February Edition (2011).

Google Scholar

[38] Yip, Shu-Kei, Oscar C. Au, Chi-Wang Ho, and Hoi-Ming Wong. Lossless visible watermarking., In Multimedia and Expo, 2006 IEEE International Conference on, pp.853-856. IEEE, (2006).

DOI: 10.1109/iscas.2006.1692863

Google Scholar

[39] Navas, K. A., S. Archana Thampy, and M. Sasikumar. EPR hiding in medical images for telemedicine., International Journal of Biomedical Sciences 3, no. 1 (2008).

DOI: 10.1007/978-3-540-69139-6_175

Google Scholar

[40] Memon, Nisar Ahmed, S. A. M. Gilani, and Shams Qayoom. Multiple watermarking of medical images for content authentication and recovery., In Multitopic Conference, 2009. INMIC 2009. IEEE 13th International, pp.1-6. IEEE, (2009).

DOI: 10.1109/inmic.2009.5383112

Google Scholar

[41] Woo, Chaw-Seng, Jiang Du, and Binh L. Pham. Multiple watermark method for privacy control and tamper detection in medical images., (2005): 59-64.

Google Scholar

[42] Smitha, B., and K. A. Navas. Spatial domain-high capacity data hiding in ROI images. " In Signal Processing, Communications and Networking, 2007. ICSCN, 07. International Conference on, pp.528-533. IEEE, (2007).

DOI: 10.1109/icscn.2007.350657

Google Scholar

[43] Ferzli, Rony, and Lina J. Karam. Human visual system based no-reference objective image sharpness metric., In Image Processing, 2006 IEEE International Conference on, pp.2949-2952. IEEE, (2006).

DOI: 10.1109/icip.2006.312925

Google Scholar

[44] Frese, Thomas, Charles A. Bouman, and Jan P. Allebach. Methodology for designing image similarity metrics based on human visual system models. " In Electronic Imaging, 97, pp.472-483. International Society for Optics and Photonics, (1997).

DOI: 10.1117/12.274545

Google Scholar

[45] Panetta, Karen, Eric J. Wharton, and Sos S. Agaian. Human visual system-based image enhancement and logarithmic contrast measure., Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 38, no. 1 (2008): 174-188.

DOI: 10.1109/tsmcb.2007.909440

Google Scholar

[46] Saghri, John A., Patrick S. Cheatham, and Ali Habibi. Image quality measure based on a human visual system model., Optical Engineering 28, no. 7 (1989): 287813-287813.

DOI: 10.1117/12.7977038

Google Scholar

[47] Bouzerdoum, Abdesselam, A. Havstad, and A. Beghdadi. Image quality assessment using a neural network approach., In Signal Processing and Information Technology, 2004. Proceedings of the Fourth IEEE International Symposium on, pp.330-333. IEEE, (2004).

DOI: 10.1109/isspit.2004.1433751

Google Scholar

[48] Medda, Alessio, and Victor DeBrunner. Color image quality index based on the UIQI., In Image Analysis and Interpretation, 2006 IEEE Southwest Symposium on, pp.213-217. IEEE, (2006).

DOI: 10.1109/ssiai.2006.1633753

Google Scholar

[49] Cvejic, Nedeljko, Artur Loza, David Bull, and Nishan Canagarajah. A similarity metric for assessment of image fusion algorithms., International Journal of Signal Processing 2, no. 3 (2005): 178-182.

Google Scholar

[50] Blasch, Erik, Xiaokun Li, Genshe Chen, and Wenhua Li. Image quality assessment for performance evaluation of image fusion., In Information Fusion, 2008 11th International Conference on, pp.1-6. IEEE, (2008).

Google Scholar

[51] Brooks, Alan C., Xiaonan Zhao, and Thrasyvoulos N. Pappas. Structural similarity quality metrics in a coding context: exploring the space of realistic distortions., Image Processing, IEEE Transactions on 17, no. 8 (2008): 1261-1273.

DOI: 10.1109/tip.2008.926161

Google Scholar

[52] Lin, Ting-Lan, Neng-Chieh Yang, Ray-Hong Syu, Chin-Chie Liao, Wei-Lin Tsai, Chi-Chan Chou, and Shih-Lun Chen. NR-Bitstream video quality metrics for SSIM using encoding decisions in AVC and HEVC coded videos., Journal of Visual Communication and Image Representation (2015).

DOI: 10.1016/j.jvcir.2015.03.008

Google Scholar

[53] Rouse, D.M. and Hemami, S.S., 2008, February. Analyzing the role of visual structure in the recognition of natural image content with multi-scale SSIM. In Electronic Imaging 2008 (pp.680615-680615). International Society for Optics and Photonics.

DOI: 10.1117/12.768060

Google Scholar

[54] Li, Chaofeng, and Alan C. Bovik. Content-partitioned structural similarity index for image quality assessment., Signal Processing: Image Communication 25, no. 7 (2010): 517-526.

DOI: 10.1016/j.image.2010.03.004

Google Scholar

[55] Jeyakumar, Vijay, and Bommanna Raja Kanagaraj. Performance Evaluation of Image Retrieval System Based on Error Metrics., Indian Journal of Science and Technology 8, no. S7 (2015): 117-121.

DOI: 10.17485/ijst/2015/v8is7/64950

Google Scholar

[56] Sampat, Mehul P., Zhou Wang, Shalini Gupta, Alan Conrad Bovik, and Mia K. Markey. Complex wavelet structural similarity: A new image similarity index., Image Processing, IEEE Transactions on 18, no. 11 (2009): 2385-2401.

DOI: 10.1109/tip.2009.2025923

Google Scholar

[57] Wang, Zhou, and Qiang Li. Information content weighting for perceptual image quality assessment., Image Processing, IEEE Transactions on 20, no. 5 (2011): 1185-1198.

DOI: 10.1109/tip.2010.2092435

Google Scholar

[58] Wang Z, Simoncelli EP, Bovik AC. Multiscale structural similarity for image quality assessment. InSignals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on 2003 Nov 9 (Vol. 2, pp.1398-1402).

DOI: 10.1109/acssc.2003.1292216

Google Scholar