[1]
W. Wang, Q. Li, J. Zhai, Electroless plating of copper on fly ash cenospheres using polyaniline-Pd activation, Surf. Interface Anal. 45 (2013) 756–761.
DOI: 10.1002/sia.5156
Google Scholar
[2]
X.G. Cao, H.Y. Zhang, Investigation into conductivity of silver-coated cenosphere composites prepared by a modified electroless process, Appl. Surf. Sci. 264 (2013) 756–760.
DOI: 10.1016/j.apsusc.2012.10.116
Google Scholar
[3]
W. Wang, J. Zhai, Q. Li, Synthesis of buoyant metal-coated fly ash cenosphere and its excellent catalytic performance in dye degradation, J. Colloid Interface Sci. 444 (2015) 10–16.
DOI: 10.1016/j.jcis.2014.12.059
Google Scholar
[4]
X. Xia, X. Chen, Z. Zhang, X. Chen, W. Zhao, B. Liao, B. Hur, Compressive properties of closed-cell aluminum foams with different contents of ceramic microspheres, Mater. Des. 56 (2014) 353–358.
DOI: 10.1016/j.matdes.2013.11.040
Google Scholar
[5]
S. Birla, D.P. Mondal, S. Das, D.K. Kashyap, V.A.N. Ch, Effect of cenosphere content on the compressive deformation behaviour of aluminum-cenosphere hybrid foam, Mater. Sci. Eng. A. 685 (2017) 213–226.
DOI: 10.1016/j.msea.2016.12.131
Google Scholar
[6]
A.D. Akinwekomi, C. Tang, G.C. Tsui, W. Law, L. Chen, X. Yang, M. Hamdi, Synthesis and characterisation of floatable magnesium alloy syntactic foams with hybridised cell morphology, Mater. Des. 160 (2018) 591–600.
DOI: 10.1016/j.matdes.2018.10.004
Google Scholar
[7]
S. Zahi, A.R. Daud, Fly ash characterization and application in Al-based Mg alloys, Mater. Des. 32 (2011) 1337–1346.
DOI: 10.1016/j.matdes.2010.09.021
Google Scholar
[8]
K. Shahapurkar, M. Doddamani, G.C.M. Kumar, N. Gupta, C. Materials, Effect of cenosphere fi ller surface treatment on the erosion behavior of epoxy matrix syntactic foams, Polym. Compos. (2018) 1–10.
DOI: 10.1002/pc.24994
Google Scholar
[9]
B.R.B. Kumar, M. Doddamani, S.E. Zeltmann, N. Gupta, M.R. Ramesh, S. Ramakrishna, Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine, Mater. Des. 92 (2016) 414–423.
DOI: 10.1016/j.matdes.2015.12.052
Google Scholar
[10]
B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, K. Kondoh, Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests, Compos. Sci. Technol. 113 (2015) 1–8.
DOI: 10.1016/j.compscitech.2015.03.009
Google Scholar
[11]
M. Blosi, S. Albonetti, M. Dondi, C. Martelli, G. Baldi, Microwave-assisted polyol synthesis of Cu nanoparticles, J. Nanoparticle Res. 13 (2011) 127–138.
DOI: 10.1007/s11051-010-0010-7
Google Scholar
[12]
Y. Zhao, J.-J. Zhu, J.-M. Hong, N. Bian, H.-Y. Chen, Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology, Eur. J. Inorg. Chem. 2004 (2004) 4072–4080.
DOI: 10.1002/ejic.200400258
Google Scholar
[13]
H. Kawasaki, Y. Kosaka, Y. Myoujin, T. Narushima, T. Yonezawa, R. Arakawa, Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents., Chem. Commun. (Camb). 47 (2011) 7740–2.
DOI: 10.1039/c1cc12346g
Google Scholar