Atomistic Investigation Using Molecular Dynamics Simulation of τ4-Al3FeSi2 and τ12-Al3Fe2Si Phases under Tensile Deformation

Article Preview

Abstract:

Aluminum-Iron-Silicon (Al-Fe-Si) alloys are extremely applied in many specific industries, such as aerospace and automobiles. Their atomic concentration influences the mechanical behavior of the investigated τ4-Al3Fe2Si and τ12-Al3FeSi2 phases. The uniaxial-tensile deformation is used to compare their structural evolution under the same conditions.Atomic displacement and mechanical behavior have an interest in the elastic and plastic areas. Stress-Strain responses and Radial Distribution Function (RDF) are required. Further, atomic simulations using molecular dynamics demonstrate the change occurs. Its process is carried out at a strain rate of 21×1010 s-1 using the NPT (isothermal-isobaric) with roughly 20 700 atoms at a pressure of 105 Pa. Furthermore, using a Nosée Hoover thermostat at the temperature of 300 k is decisive.The Modified Embedded Atoms Method (MEAM) is the applied potential between Al, Fe, and Si atoms. The elastic modulus and single pair atomic correlation before and after straining are increased by this method. The atomic correlations are shown in short- and long-range order and the τ12-Al3Fe2Si phase illustrates stronger properties compared to τ4-Al3Fe2Si phase. Our results underscore an important variation associated with the change of iron and silicon concentration. More specifics are covered in the selection paper.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] M.J. Echeverria, S. Galitskiy, A. Mishra, R. Dingreville, A.M. Dongare, Understanding the plasticity contributions during laser-shock loading and spall failure of Cu microstructures at the atomic scales, Comput. Mater. Sci. 198 (2021) 110668.

DOI: 10.1016/j.commatsci.2021.110668

Google Scholar

[2] R.L. Anderson, H.C. Greenwell, J.L. Suter, P. V. Coveney, M.A. Thyveetil, Determining materials properties of natural composites using molecular simulation, J. Mater. Chem. 19.

DOI: 10.1039/b909119j

Google Scholar

[3] V. Stefániay, A. Griger, T. Turmezey, Intermetallic phases in the aluminium-side corner of the AlFeSi-alloy system, J. Mater. Sci. 22 (1987) 539–546.

DOI: 10.1007/bf01160766

Google Scholar

[4] A. Boulouma, A. Drici, A. Benaldjia, M. Guerioune, D. Vrel, The formation of (Al 8 Fe 2 Si, Al 13 Fe 4 ) phases from Al-Fe-Si system by TE mode, AIP Conf. Proc. 1653 (2015).

DOI: 10.1063/1.4914214

Google Scholar

[5] G.F. Batalha, Introduction to Materials Modeling and Characterization, in: Compr. Mater. Process., Elsevier, 2014: p.1–5.

Google Scholar

[6] S. Winczewski, J. Rybicki, Anisotropic mechanical behavior and auxeticity of penta-graphene: Molecular statics/molecular dynamics studies, Carbon N. Y. 146 (2019) 572–587.

DOI: 10.1016/j.carbon.2019.02.042

Google Scholar

[7] B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S.G. Kim, G.J. Wagner, A. Moitra, M.I. Baskes, Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys, Phys. Rev. B - Condens. Matter Mater. Phys. 85 (2012).

DOI: 10.1103/physrevb.85.245102

Google Scholar

[8] V.A. Lubarda, On the effective lattice parameter of binary alloys, Mech. Mater. 35 (2003) 53–68.

Google Scholar

[9] V. V. Stegaĭlov, A. V. Yanilkin, Structural transformations in single-crystal iron during shock-wave compression and tension: Molecular dynamics simulation, J. Exp. Theor. Phys. 104 (2007) 928–935.

DOI: 10.1134/s1063776107060106

Google Scholar

[10] F. Hasheminia, Y. Bahari, A. Rajabpour, S. Arabha, Elucidation of thermo-mechanical properties of silicon nanowires from a molecular dynamics perspective, Comput. Mater. Sci. 200 (2021) 110821.

DOI: 10.1016/j.commatsci.2021.110821

Google Scholar

[11] N. Krendelsberger, F. Weitzer, J.C. Schuster, On the reaction scheme and liquidus surface in the ternary system Al-Fe-Si, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 38 (2007) 1681–1691.

DOI: 10.1007/s11661-007-9182-x

Google Scholar

[12] U.K. Padidela, T. Khanna, R.N. Behera, Structure, thermodynamics and diffusion in asymmetric binary mixtures: a molecular dynamics simulation study, Phys. Chem. Liq. 56 (2018) 685–701.

DOI: 10.1080/00319104.2017.1407932

Google Scholar

[13] L.A. Kazantseva, A.P. Zykova, M.P. Kalashnikov, I.A. Kurzina, Formation of Three-Component Phases in Silumins Using a Modifying Mixture Based on Refractory Metals, Bull. Russ. Acad. Sci. Phys. 82 (2018) 1165–1171.

DOI: 10.3103/s1062873818090149

Google Scholar

[14] W. Xu, W.K. Kim, Molecular dynamics simulation of the uniaxial tensile test of silicon nanowires using the MEAM potential, Mech. Mater. 137 (2019) 103140.

DOI: 10.1016/j.mechmat.2019.103140

Google Scholar

[15] V. Raghavan, Al-Fe-Si ( Aluminum-Iron-Silicon ), 30 (2009) 184–188.

Google Scholar

[16] M.C.J. Marker, B. Skolyszewska-Kühberger, H.S. Effenberger, C. Schmetterer, K.W. Richter, Phase equilibria and structural investigations in the system Al-Fe-Si, Intermetallics. 19 (2011) 1919–(1929).

DOI: 10.1016/j.intermet.2011.05.003

Google Scholar

[17] B.-J. Lee, W.-S. Ko, H.-K. Kim, E.-H. Kim, The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations, Calphad. 34 (2010) 510–522.

DOI: 10.1016/j.calphad.2010.10.007

Google Scholar

[18] M.S. Daw, M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, 29 (1984).

DOI: 10.1103/physrevb.29.6443

Google Scholar

[19] M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B. 46 (1992) 2727–2742.

DOI: 10.1103/physrevb.46.2727

Google Scholar

[20] S. Plimpton, Fast Parrallel Algorithms for Short-Range Molecular Dynamics, Soft Matter. 117 (1995) 1–19.

Google Scholar

[21] C. Braga, K.P. Travis, A configurational temperature Nosé-Hoover thermostat, J. Chem. Phys. 123 (2005) 0–15.

Google Scholar

[22] R. Sun, P. Liu, H. Qi, W. Wang, F. Lv, J. Liu, Structural and atomic displacement evaluations of Aluminium nanoparticle in thermal annealing treatment: An insight through molecular dynamic simulations, Mater. Res. Express. 6 (2019).

DOI: 10.1088/2053-1591/ab609b

Google Scholar

[23] M. Zarringhalam, H. Ahmadi-Danesh-Ashtiani, D. Toghraie, R. Fazaeli, Molecular dynamic simulation to study the effects of roughness elements with cone geometry on the boiling flow inside a microchannel, Int. J. Heat Mass Transf. 141 (2019) 1–8.

DOI: 10.1016/j.ijheatmasstransfer.2019.06.064

Google Scholar

[24] E.S. Fomin, Consideration of Data Load Time on Modern Processors for the Verlet Table and Linked-Cell Algorithms, J. Comput. Chem. 32 (2011) 1386–1399.

DOI: 10.1002/jcc.21722

Google Scholar

[25] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18 (2009) 15012.

DOI: 10.1088/0965-0393/18/1/015012

Google Scholar

[26] Y. Ouldhnini, A. Atila, S. Ouaskit, A. Hasnaoui, Atomistic insights into the structure and elasticity of densified 45S5 bioactive glasses, Phys. Chem. Chem. Phys. 23 (2021) 15292–15301.

DOI: 10.1039/d1cp02192c

Google Scholar

[27] K.S. Stopka, M. Yaghoobi, J.E. Allison, D.L. McDowell, Effects of Boundary Conditions on Microstructure-Sensitive Fatigue Crystal Plasticity Analysis, Integr. Mater. Manuf. Innov. 10 (2021) 393–412.

DOI: 10.1007/s40192-021-00219-2

Google Scholar

[28] F. Mehralian, R.D. Firouz-Abadi, M. Norouzi, Molecular dynamics study on axial elastic modulus of carbon nanoropes, Arch. Civ. Mech. Eng. 19 (2019) 1127–1134.

DOI: 10.1016/j.acme.2019.05.001

Google Scholar

[29] S. Tabibian, E. Charkaluk, A. Constantinescu, G. Guillemot, F. Szmytka, Influence of process-induced microstructure on hardness of two Al-Si alloys, Mater. Sci. Eng. A. 646 (2015) 190–200.

DOI: 10.1016/j.msea.2015.08.051

Google Scholar

[30] G. Gustafsson, T. Thorvaldsson, G.L. Dunlop, INFLUENCE OF Fe AND Cr ON THE MICROSTRUCTURE OF CAST Al-Si-Mg ALLOYS., Metall. Trans. A, Phys. Metall. Mater. Sci. 17 A (1986) 45–52.

DOI: 10.1007/bf02644441

Google Scholar

[31] A. Leonardi, M. Leoni, P. Scardi, Directional pair distribution function for diffraction line profile analysis of atomistic models, J. Appl. Crystallogr. 46 (2013) 63–75.

DOI: 10.1107/s0021889812050601

Google Scholar

[32] Q.L. Cao, F. Tu, L. Xue, F.H. Wang, Assessing relationships between self-diffusion coefficient and viscosity in Ni-Al alloys based on the pair distribution function, J. Appl. Phys. 126 (2019).

DOI: 10.1063/1.5109598

Google Scholar

[33] D. Semrouni, H.W. Wang, S.B. Clark, C.I. Pearce, K. Page, G. Schenter, D.J. Wesolowski, A.G. Stack, A.E. Clark, Resolving local configurational contributions to X-ray and neutron radial distribution functions within solutions of concentrated electrolytes-a case study of concentrated NaOH, Phys. Chem. Chem. Phys. 21 (2019) 6828–6838.

DOI: 10.1039/c8cp06802j

Google Scholar

[34] M. Bu, W. Liang, G. Lu, J. Yu, Local structure elucidation and properties prediction on KCl–CaCl2 molten salt: A deep potential molecular dynamics study, Sol. Energy Mater. Sol. Cells. 232 (2021) 111346.

DOI: 10.1016/j.solmat.2021.111346

Google Scholar

[35] Y. Shinzato, Y. Saito, M. Yoshino, H. Yukawa, M. Morinaga, T. Baba, H. Nakai, Energy expression of the chemical bond between atoms in metal oxides, J. Phys. Chem. Solids. 72 (2011) 853–861.

DOI: 10.1016/j.jpcs.2011.03.014

Google Scholar

[36] M. Morinaga, Atomization Energy Approach to Alloys and Metal Compounds, (2019).

Google Scholar

[37] T.T. Duong, T. Iitaka, P.K. Hung, N. Van Hong, The first peak splitting of the Ge[sbnd]Ge pair RDF in the correlation to network structure of GeO2 under compression, J. Non. Cryst. Solids. 459 (2017) 103–110.

DOI: 10.1016/j.jnoncrysol.2017.01.003

Google Scholar

[38] R. Mohammadzadeh, Analysis of plastic strain-enhanced diffusivity in nanocrystalline iron by atomistic simulation, J. Appl. Phys. 125 (2019).

DOI: 10.1063/1.5085659

Google Scholar

[39] Materials Project, Materials data on Al3Fe2Si by Materials, DataCite. (2016). https://doi.org/https://doi.org/10.17188/1663997.

Google Scholar

[40] Materials Projects, Materials Data on Al3FeSi2 by Materials, DataCite. (2016). https://doi.org/http://doi.org/10.17188/1262387.

Google Scholar

[41] L. Amirkhanyan, T. Weissbach, T. Gruber, T. Zienert, O. Fabrichnaya, J. Kortus, Thermodynamic investigation of the τ4-Al–Fe–Si intermetallic ternary phase: A density-functional theory study, J. Alloys Compd. 598 (2014) 137–141.

DOI: 10.1016/j.jallcom.2014.01.234

Google Scholar

[42] E.G. Morni, W. Wolf, J. Hafner, R. Podloucky, Cohesive, structural, and electronic properties of fe-si compounds, Phys. Rev. B - Condens. Matter Mater. Phys. 59 (1999) 12860–12871. https://doi.org/10.1103/PhysRevB.59.12860.

DOI: 10.1103/physrevb.59.12860

Google Scholar