[1]
M.J. Echeverria, S. Galitskiy, A. Mishra, R. Dingreville, A.M. Dongare, Understanding the plasticity contributions during laser-shock loading and spall failure of Cu microstructures at the atomic scales, Comput. Mater. Sci. 198 (2021) 110668.
DOI: 10.1016/j.commatsci.2021.110668
Google Scholar
[2]
R.L. Anderson, H.C. Greenwell, J.L. Suter, P. V. Coveney, M.A. Thyveetil, Determining materials properties of natural composites using molecular simulation, J. Mater. Chem. 19.
DOI: 10.1039/b909119j
Google Scholar
[3]
V. Stefániay, A. Griger, T. Turmezey, Intermetallic phases in the aluminium-side corner of the AlFeSi-alloy system, J. Mater. Sci. 22 (1987) 539–546.
DOI: 10.1007/bf01160766
Google Scholar
[4]
A. Boulouma, A. Drici, A. Benaldjia, M. Guerioune, D. Vrel, The formation of (Al 8 Fe 2 Si, Al 13 Fe 4 ) phases from Al-Fe-Si system by TE mode, AIP Conf. Proc. 1653 (2015).
DOI: 10.1063/1.4914214
Google Scholar
[5]
G.F. Batalha, Introduction to Materials Modeling and Characterization, in: Compr. Mater. Process., Elsevier, 2014: p.1–5.
Google Scholar
[6]
S. Winczewski, J. Rybicki, Anisotropic mechanical behavior and auxeticity of penta-graphene: Molecular statics/molecular dynamics studies, Carbon N. Y. 146 (2019) 572–587.
DOI: 10.1016/j.carbon.2019.02.042
Google Scholar
[7]
B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S.G. Kim, G.J. Wagner, A. Moitra, M.I. Baskes, Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys, Phys. Rev. B - Condens. Matter Mater. Phys. 85 (2012).
DOI: 10.1103/physrevb.85.245102
Google Scholar
[8]
V.A. Lubarda, On the effective lattice parameter of binary alloys, Mech. Mater. 35 (2003) 53–68.
Google Scholar
[9]
V. V. Stegaĭlov, A. V. Yanilkin, Structural transformations in single-crystal iron during shock-wave compression and tension: Molecular dynamics simulation, J. Exp. Theor. Phys. 104 (2007) 928–935.
DOI: 10.1134/s1063776107060106
Google Scholar
[10]
F. Hasheminia, Y. Bahari, A. Rajabpour, S. Arabha, Elucidation of thermo-mechanical properties of silicon nanowires from a molecular dynamics perspective, Comput. Mater. Sci. 200 (2021) 110821.
DOI: 10.1016/j.commatsci.2021.110821
Google Scholar
[11]
N. Krendelsberger, F. Weitzer, J.C. Schuster, On the reaction scheme and liquidus surface in the ternary system Al-Fe-Si, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 38 (2007) 1681–1691.
DOI: 10.1007/s11661-007-9182-x
Google Scholar
[12]
U.K. Padidela, T. Khanna, R.N. Behera, Structure, thermodynamics and diffusion in asymmetric binary mixtures: a molecular dynamics simulation study, Phys. Chem. Liq. 56 (2018) 685–701.
DOI: 10.1080/00319104.2017.1407932
Google Scholar
[13]
L.A. Kazantseva, A.P. Zykova, M.P. Kalashnikov, I.A. Kurzina, Formation of Three-Component Phases in Silumins Using a Modifying Mixture Based on Refractory Metals, Bull. Russ. Acad. Sci. Phys. 82 (2018) 1165–1171.
DOI: 10.3103/s1062873818090149
Google Scholar
[14]
W. Xu, W.K. Kim, Molecular dynamics simulation of the uniaxial tensile test of silicon nanowires using the MEAM potential, Mech. Mater. 137 (2019) 103140.
DOI: 10.1016/j.mechmat.2019.103140
Google Scholar
[15]
V. Raghavan, Al-Fe-Si ( Aluminum-Iron-Silicon ), 30 (2009) 184–188.
Google Scholar
[16]
M.C.J. Marker, B. Skolyszewska-Kühberger, H.S. Effenberger, C. Schmetterer, K.W. Richter, Phase equilibria and structural investigations in the system Al-Fe-Si, Intermetallics. 19 (2011) 1919–(1929).
DOI: 10.1016/j.intermet.2011.05.003
Google Scholar
[17]
B.-J. Lee, W.-S. Ko, H.-K. Kim, E.-H. Kim, The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations, Calphad. 34 (2010) 510–522.
DOI: 10.1016/j.calphad.2010.10.007
Google Scholar
[18]
M.S. Daw, M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, 29 (1984).
DOI: 10.1103/physrevb.29.6443
Google Scholar
[19]
M.I. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B. 46 (1992) 2727–2742.
DOI: 10.1103/physrevb.46.2727
Google Scholar
[20]
S. Plimpton, Fast Parrallel Algorithms for Short-Range Molecular Dynamics, Soft Matter. 117 (1995) 1–19.
Google Scholar
[21]
C. Braga, K.P. Travis, A configurational temperature Nosé-Hoover thermostat, J. Chem. Phys. 123 (2005) 0–15.
Google Scholar
[22]
R. Sun, P. Liu, H. Qi, W. Wang, F. Lv, J. Liu, Structural and atomic displacement evaluations of Aluminium nanoparticle in thermal annealing treatment: An insight through molecular dynamic simulations, Mater. Res. Express. 6 (2019).
DOI: 10.1088/2053-1591/ab609b
Google Scholar
[23]
M. Zarringhalam, H. Ahmadi-Danesh-Ashtiani, D. Toghraie, R. Fazaeli, Molecular dynamic simulation to study the effects of roughness elements with cone geometry on the boiling flow inside a microchannel, Int. J. Heat Mass Transf. 141 (2019) 1–8.
DOI: 10.1016/j.ijheatmasstransfer.2019.06.064
Google Scholar
[24]
E.S. Fomin, Consideration of Data Load Time on Modern Processors for the Verlet Table and Linked-Cell Algorithms, J. Comput. Chem. 32 (2011) 1386–1399.
DOI: 10.1002/jcc.21722
Google Scholar
[25]
A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18 (2009) 15012.
DOI: 10.1088/0965-0393/18/1/015012
Google Scholar
[26]
Y. Ouldhnini, A. Atila, S. Ouaskit, A. Hasnaoui, Atomistic insights into the structure and elasticity of densified 45S5 bioactive glasses, Phys. Chem. Chem. Phys. 23 (2021) 15292–15301.
DOI: 10.1039/d1cp02192c
Google Scholar
[27]
K.S. Stopka, M. Yaghoobi, J.E. Allison, D.L. McDowell, Effects of Boundary Conditions on Microstructure-Sensitive Fatigue Crystal Plasticity Analysis, Integr. Mater. Manuf. Innov. 10 (2021) 393–412.
DOI: 10.1007/s40192-021-00219-2
Google Scholar
[28]
F. Mehralian, R.D. Firouz-Abadi, M. Norouzi, Molecular dynamics study on axial elastic modulus of carbon nanoropes, Arch. Civ. Mech. Eng. 19 (2019) 1127–1134.
DOI: 10.1016/j.acme.2019.05.001
Google Scholar
[29]
S. Tabibian, E. Charkaluk, A. Constantinescu, G. Guillemot, F. Szmytka, Influence of process-induced microstructure on hardness of two Al-Si alloys, Mater. Sci. Eng. A. 646 (2015) 190–200.
DOI: 10.1016/j.msea.2015.08.051
Google Scholar
[30]
G. Gustafsson, T. Thorvaldsson, G.L. Dunlop, INFLUENCE OF Fe AND Cr ON THE MICROSTRUCTURE OF CAST Al-Si-Mg ALLOYS., Metall. Trans. A, Phys. Metall. Mater. Sci. 17 A (1986) 45–52.
DOI: 10.1007/bf02644441
Google Scholar
[31]
A. Leonardi, M. Leoni, P. Scardi, Directional pair distribution function for diffraction line profile analysis of atomistic models, J. Appl. Crystallogr. 46 (2013) 63–75.
DOI: 10.1107/s0021889812050601
Google Scholar
[32]
Q.L. Cao, F. Tu, L. Xue, F.H. Wang, Assessing relationships between self-diffusion coefficient and viscosity in Ni-Al alloys based on the pair distribution function, J. Appl. Phys. 126 (2019).
DOI: 10.1063/1.5109598
Google Scholar
[33]
D. Semrouni, H.W. Wang, S.B. Clark, C.I. Pearce, K. Page, G. Schenter, D.J. Wesolowski, A.G. Stack, A.E. Clark, Resolving local configurational contributions to X-ray and neutron radial distribution functions within solutions of concentrated electrolytes-a case study of concentrated NaOH, Phys. Chem. Chem. Phys. 21 (2019) 6828–6838.
DOI: 10.1039/c8cp06802j
Google Scholar
[34]
M. Bu, W. Liang, G. Lu, J. Yu, Local structure elucidation and properties prediction on KCl–CaCl2 molten salt: A deep potential molecular dynamics study, Sol. Energy Mater. Sol. Cells. 232 (2021) 111346.
DOI: 10.1016/j.solmat.2021.111346
Google Scholar
[35]
Y. Shinzato, Y. Saito, M. Yoshino, H. Yukawa, M. Morinaga, T. Baba, H. Nakai, Energy expression of the chemical bond between atoms in metal oxides, J. Phys. Chem. Solids. 72 (2011) 853–861.
DOI: 10.1016/j.jpcs.2011.03.014
Google Scholar
[36]
M. Morinaga, Atomization Energy Approach to Alloys and Metal Compounds, (2019).
Google Scholar
[37]
T.T. Duong, T. Iitaka, P.K. Hung, N. Van Hong, The first peak splitting of the Ge[sbnd]Ge pair RDF in the correlation to network structure of GeO2 under compression, J. Non. Cryst. Solids. 459 (2017) 103–110.
DOI: 10.1016/j.jnoncrysol.2017.01.003
Google Scholar
[38]
R. Mohammadzadeh, Analysis of plastic strain-enhanced diffusivity in nanocrystalline iron by atomistic simulation, J. Appl. Phys. 125 (2019).
DOI: 10.1063/1.5085659
Google Scholar
[39]
Materials Project, Materials data on Al3Fe2Si by Materials, DataCite. (2016). https://doi.org/https://doi.org/10.17188/1663997.
Google Scholar
[40]
Materials Projects, Materials Data on Al3FeSi2 by Materials, DataCite. (2016). https://doi.org/http://doi.org/10.17188/1262387.
Google Scholar
[41]
L. Amirkhanyan, T. Weissbach, T. Gruber, T. Zienert, O. Fabrichnaya, J. Kortus, Thermodynamic investigation of the τ4-Al–Fe–Si intermetallic ternary phase: A density-functional theory study, J. Alloys Compd. 598 (2014) 137–141.
DOI: 10.1016/j.jallcom.2014.01.234
Google Scholar
[42]
E.G. Morni, W. Wolf, J. Hafner, R. Podloucky, Cohesive, structural, and electronic properties of fe-si compounds, Phys. Rev. B - Condens. Matter Mater. Phys. 59 (1999) 12860–12871. https://doi.org/10.1103/PhysRevB.59.12860.
DOI: 10.1103/physrevb.59.12860
Google Scholar