Experimental Studies on Synthesis Gas Production from Wood Wastes in a Pilot Downdraft Gasifier

Article Preview

Abstract:

Gasification is a green technology, which produces combustible gas mixture from solid biomass by partial oxidation at elevated temperatures. Synthesis gas, the desired product of such technology, has more uses than the solid biomass. In this study, a locally developed pilot scale fixed-bed downdraft biomass gasifier was examined. Several gasification experiments using mixed wood wastes (generated from the utilisation of various wood species for making furniture) as feedstock was carried out under varied operating conditions to ascertain their effects on the syngas produced in the process. The effects of grate temperatures and biomass moisture levels on rate of biomass consumption and produced syngas quality were examined via several gasification experiments. The performance of the biomass gasifier system was evaluated in terms of syngas composition, lower heating value, syngas yield and carbon conversion efficiency. The results obtained revealed an average syngas yield of 1.77Nm3 per kg of wood waste consumed. The averaged molar syngas composition obtained was 28.15% CO, 16.64% H2, 6.19% CO2, 2.54% CH4 and 45.42% N2, while the average syngas LHV was 6.23MJ/Nm3. These results were compared with those published in literature.

You might also be interested in these eBooks

Info:

Pages:

115-128

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.S. Gamarra Quintero, C.A.D. Gonzalez, L. Pacheco Sandoval, Exergoeconomic analysis of a simulated system of biomass gasification-based power generation with surplus syngas storage in a rural zone in Colombia, Sustain. Energy Technol. Assessments 44 (2021) 101075. https://doi.org/10.1016/j.seta.2021.101075.

DOI: 10.1016/j.seta.2021.101075

Google Scholar

[2] S. Safarian, S.M.E, Saryazdi, R. Unnthorsson, C. Richter, Gasification of woody biomasses and forestry residues: simulation, performance analysis, and environmental impact, Fermentation 7 (2021) 61 - 67. https://doi.org/10.3390/ FERMENTATION7020061.

DOI: 10.3390/fermentation7020061

Google Scholar

[3] IRENA: Global Energy Transformation, A Roadmap to 2050. Available online: https://www.irena.org/media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_Report_G ET_2018.pdf. (accessed on 10 February 2022).

DOI: 10.1093/gmo/9781561592630.article.2271156

Google Scholar

[4] IEA International Energy Agency, Renewables 2019—Analysis and Forecast to 2024. Available online: https://webstore.iea.org/market-report-series-renewables-2019. (accessed on 10 April 2022).

DOI: 10.1787/b3911209-en

Google Scholar

[5] G.S. Devi, S. Vaishnavi, S. Srinath, B. Dutt, K.S. Rajmohan, Energy recovery from biomass using gasification, In: Current Developments in Biotechnology and Bioengineering: Resource Recovery from Wastes, Elsevier (2020) 363–382. https://doi.org/10.1016/B978-0-444- 64321-6.00019-7.

DOI: 10.1016/b978-0-444-64321-6.00019-7

Google Scholar

[6] S. Singh Siwal, Q, Zhang, C, Sun, S, Thakur, V, Kumar Gupta, V. Kumar Thakur, Energy production from steam gasification processes and parameters that contemplate in biomass gasifier - a review. Bioresource Technology 297 (2019) 122481. https://doi.org/10.1016/j.biortech.2019.122481.

DOI: 10.1016/j.biortech.2019.122481

Google Scholar

[7] V.R. Siemons, Identifying a role for biomass gasification in rural electrification in developing countries: the economic perspective, Biomass & Bioenergy 20 (2001) 272-285.

DOI: 10.1016/s0961-9534(00)00085-4

Google Scholar

[8] M. Sharma, R. Kaushal, Performance and exhaust emission analysis of a variable compression ratio (VCR) dual fuel CI engine fuelled with producer gas generated from pistachio shells, Fuel 283 (2020) 118924. https://doi.org/10.1016/j. fuel.2020.118924.

DOI: 10.1016/j.fuel.2020.118924

Google Scholar

[9] A. Blasi, G. Fiorenza, A. Verardi, Hydrogen from biomass. In: Current Trends and Future Developments on (Bio-) Membranes. Elsevier (2020) 43 - 73. https://doi.org/ 10.1016/B978- 0-12-817384-8.00003-0.

DOI: 10.1016/b978-0-12-817384-8.00003-0

Google Scholar

[10] X. Zhuang, Y. Song, H. Zhan, X. Yin, C. Wu, Gasification performance of biowaste-derived hydrochar: the properties of products and the conversion processes. Fuel 260 (2020) 116320. https://doi.org/10.1016/j.fuel.2019.116320.

DOI: 10.1016/j.fuel.2019.116320

Google Scholar

[11] M.L.V. Rios, A.M. Gonz´alez, E.E.S. Lora, O.A.A del Olmo, Reduction of Tar Generated during Biomass Gasification: A Review, Biomass & Bioenergy 108 (2018) 345 – 370. https://doi.org/10.1016/j.biombioe.2017.12.002.

DOI: 10.1016/j.biombioe.2017.12.002

Google Scholar

[12] M. Asadullah, Biomass gasification gas cleaning for downstream applications: a comparative critical review, Renewable and Sustainable Energy Reviews, 40 (2014) 118-132.

DOI: 10.1016/j.rser.2014.07.132

Google Scholar

[13] V.R. Patel, D. Patel, N. Varia, R.N. Patel, Co-gasification of lignite and waste wood in a pilot- scale (10kWe) downdraft gasifier, Energy 119 (2017) 834–844. https//doi.org/10.1016/j.energy.2016.11.057.

DOI: 10.1016/j.energy.2016.11.057

Google Scholar

[14] P. Basu, Biomass gasification, pyrolysis and torrefaction, practical design and theory, 3rd Ed., Academic Press, Boston, USA, (2013).

Google Scholar

[15] A. Molino, S. Chianese, D. Musmarra, Biomass gasification technology: The state of the art review, Journal of Energy Chemistry, 25 (2016) 10 – 25.

DOI: 10.1016/j.jechem.2015.11.005

Google Scholar

[16] P. McKendry, Energy production from biomass (part 2): conversion technologies, Bioresource Technology, 83 (2002) 47-54.

DOI: 10.1016/s0960-8524(01)00119-5

Google Scholar

[17] Z. Yao, S. You, T. Ge, C. Wang, Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation, Applied Energy, 209 (2018) 43 – 55.

DOI: 10.1016/j.apenergy.2017.10.077

Google Scholar

[18] J.A. Ruiz, M.C. Juarez, M. P. Morales, P. Munoz, M.A. Mendivil, Biomass gasification for electricity generation: Review of current technology barriers, Renewable and Sustainable Energy Reviews, 18 (2013) 174-183.

DOI: 10.1016/j.rser.2012.10.021

Google Scholar

[19] N.V. Gnanapragasam, M.A. Rosen, A review of hydrogen production using coal, biomass and other solid fuels, Biofuels 8 (2017) 725–745. https://doi.org/10.1080/17597269.2017.1302662.

DOI: 10.1080/17597269.2017.1302662

Google Scholar

[20] G. Marrugo, C.F. Vald´es, F. Chejne, Biochar gasification: an experimental study on Colombian agro-industrial biomass residues in a fluidized bed, Energy Fuel 31 (2017) 9408–9421. https://doi.org/10.1021/acs.energyfuels.7b00665.

DOI: 10.1021/acs.energyfuels.7b00665

Google Scholar

[21] R. Muthu Dinesh Kumar, R., Anand, Production of biofuel from biomass downdraft gasification and its applications. In: Advanced Biofuels: Applications, Technologies and Environmental Sustainability, Elsevier (2019) 129–151. https://doi.org/10.1016/B978-0-08-102791- 2.00005-2.

DOI: 10.1016/b978-0-08-102791-2.00005-2

Google Scholar

[22] S. Chuayboon, S. Abanades, S. Rodat, Experimental analysis of continuous steam gasification of wood biomass for syngas production in a high-temperature particle-fed solar reactor, Chemical Engineering and Processing – Process Intensification, 125 (2018) 253 – 265. https://doi.org/10.1016/j.cep.2018.02.004.

DOI: 10.1016/j.cep.2018.02.004

Google Scholar

[23] E. S. Aydin, O. Yucel, H. Sadikoglu, Experimental study on hydrogen-rich syngas production via gasification of pine cone particles and wood pellets in a fixed bed downdraft gasifier, International Journal of Hydrogen Energy, 44 (2019) 17389 – 17396.

DOI: 10.1016/j.ijhydene.2019.02.175

Google Scholar

[24] M. U. Moni, A. A. Aziz, R. A. Kristanti, A. Yousuf, Syngas Production from Co-gasification of Forest Residue and Charcoal in a Pilot Scale Downdraft Reactor, Waste and Biomass Valorization 11 (2018) 635–651.

DOI: 10.1007/s12649-018-0513-5

Google Scholar

[25] D.J. Stevens, Hot gas conditioning: Recent progress with larger - scale biomass gasification system, update and summary of recent progress, NREL Publication RS-510-29952, (2001).

DOI: 10.2172/786288

Google Scholar

[26] R. Yin, R. Liu, J. Wu, X. Wu, C. Sun, C. Wu, Influence of particle size on performance of a pilot-scale fixed-bed gasification, Bioresource Technology, 119 (2012) 15 - 21.

DOI: 10.1016/j.biortech.2012.05.085

Google Scholar

[27] Bioenergy for Sustainable Energy Access in Africa - Technology Value Chain Prioritisation Report. Information on https://assets.publishing.service.gov.uk/media/5ab4d869ed915d78b9a459bf/TVC_Prioritisation_Report_final_to_DFID.pdf.

Google Scholar

[28] NIRAS-LTS, E4tech, AIGUASOL and Aston University (2021). Bioenergy for Sustainable Local Energy Services and Energy Access in Africa - Prospects for commercial biomass gasification in sub-Saharan Africa. For Carbon Trust and UK Government. London. Information on https://tea.carbontrust.com/wp-ontent/uploads/2021/09/BSEAA2Prospects- for-commercial-biomass-gasification-in-Sub-Saharan-Africa.pdf.

DOI: 10.1017/cbo9780511535864.020

Google Scholar

[29] P.E. Akhator, A.I. Obanor, E.G. Sadjere, Design and development of a small-scale biomass downdraft gasifier, Nigerian Journey of Technology, 38 (2019) 922 – 930.

DOI: 10.4314/njt.v38i4.15

Google Scholar

[30] I.H. Gado, O. Sanogo, T. Daho, B. Issa, P. Josue, Design, realization of a fixed bed downdraft gasifier and conduction of preliminary gasification tests with balanites aegyptiaca hulls, rice husk and charcoal, African Journal of Environmental Science and Technology, 13 (2019) 117-125.

DOI: 10.5897/ajest2018.2631

Google Scholar

[31] I.M. Mobi, I. Ezeonuegbu, I.U. Onyenanu, Production of gasifier stove for use in Nigeria: an alternative energy awareness, International Journal of Engineering and Technical Research, 1 (2013) 123 – 129.

Google Scholar

[32] S. Ojolo, S. Abolarin, O. Adegbenro, Development of a laboratory scale updraft biomass gasifier, International Journal of Manufacturing Systems, 2 (2012) 21-42.

DOI: 10.3923/ijmsaj.2012.21.42

Google Scholar

[33] ASTM E870-82. Standard test method for analysis of wood fuels, ASTM International, West Conshohocken, PA, 2013, www.astm.org.

Google Scholar

[34] L. Waldheim, T. Nilsson, Heating value of gases from biomass gasification. Report No. TPS- 01/16. Kvaerner, Chemrec AB, (2001).

Google Scholar

[35] T.B. Reed, A. Das, Handbook of biomass downdraft gasifier engine systems, 1st Ed, Solar Energy Research Institute, (1988).

DOI: 10.2172/5206099

Google Scholar

[36] A. Chaurasia, Modeling, simulation and optimization of downdraft gasifier: studies on chemical kinetics and operating conditions on the performance of the biomass gasification process, Energy 116 (Part 1) (2016) 1065 - 1076.

DOI: 10.1016/j.energy.2016.10.037

Google Scholar

[37] O. Yucel, M. A. Hastaoglu, Kinetic modelling and simulation of throat downdraft gasifier, Fuel Process. Technol. 144 (2016) 145–154.

DOI: 10.1016/j.fuproc.2015.12.023

Google Scholar

[38] C. Dejtrakulwong, S. Patumsawad, Four zones modelling of the downdraft biomass gasification process: effect of moisture content and air to fuel ratio, Energy Procedia 52 (2014) 142–149.

DOI: 10.1016/j.egypro.2014.07.064

Google Scholar

[39] M. Simone, F. Barontini, C. Nicolella, L. Tognotti, Gasification of pelletized biomass in a pilot scale downdraft gasifier, Bioresource Technology, 116 (2012) 403 - 412.

DOI: 10.1016/j.biortech.2012.03.119

Google Scholar

[40] P.N. Sheth, B.V. Babu, Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier, Bioresource Technology, 100 (2009) 3127-3133.

DOI: 10.1016/j.biortech.2009.01.024

Google Scholar

[41] M. Simone, C. Nicolella, L. Tognotti, Numerical and experimental investigation of downdraft gasification of woody residues, Bioresource Technology 133 (2013) 92 - 101.

DOI: 10.1016/j.biortech.2013.01.056

Google Scholar

[42] I. Janajreh, M. Al Shrah, Numerical and experimental investigation of downdraft gasification of wood chips, Energy Convers. Manag. 65 (2013) 783 - 792.

DOI: 10.1016/j.enconman.2012.03.009

Google Scholar

[43] N. Couto, A. Rouboa, V. Silva, E. Monteiro, K. Bouziane, Influence of the biomassgasification processes on the final composition of syngas, Energy Procedia, 36 (2013) 596 – 606.

DOI: 10.1016/j.egypro.2013.07.068

Google Scholar

[44] L. Wei, J.A. Thomasson, R.M. Bricka, R. Sui, J.R. Wooten, E.P. Columbus, Syngas quality evaluation for biomass gasification with a downdraft gasifier, American Society of Agricultural and Biological Engineers, 52 (2009) 21-37.

DOI: 10.13031/2013.25938

Google Scholar

[45] D. Vera, F. Jurado, N.K. Margaritis, P. Grammelis, Experimental and economic study of a gasification plant fuelled with olive industry wastes, Energy for Sustainable Development, 23 (2014) 247 – 257.

DOI: 10.1016/j.esd.2014.09.011

Google Scholar

[46] N. Striugas, K. Zakarauskas, A. Džiugys, R. Navakas, R. Paulauskas, An evaluation of performance of automatically operated multi-fuel downdraft gasifier for energy production, Applied Thermal Energy, 73 (2014) 1151 - 1159.

DOI: 10.1016/j.applthermaleng.2014.09.007

Google Scholar

[47] M. Costa, M. La Villetta, D. Piazzullo, D.A. Cirillo, Phenomenological Model of a Downdraft Biomass Gasifier Flexible to the Feedstock Composition and the Reactor Design. Energies 14 (2014) 4226. https://doi.org/10.3390/en14144226.

DOI: 10.3390/en14144226

Google Scholar

[48] P. Kumar, P.M.V. Subbarao, L.D. Kala, V.K. Vijay, Real-time performance assessment of open- top downdraft biomass gasifier system, Cleaner Engineering and Technology 7 (2022) 100448.

DOI: 10.1016/j.clet.2022.100448

Google Scholar