[1]
J.S. Gamarra Quintero, C.A.D. Gonzalez, L. Pacheco Sandoval, Exergoeconomic analysis of a simulated system of biomass gasification-based power generation with surplus syngas storage in a rural zone in Colombia, Sustain. Energy Technol. Assessments 44 (2021) 101075. https://doi.org/10.1016/j.seta.2021.101075.
DOI: 10.1016/j.seta.2021.101075
Google Scholar
[2]
S. Safarian, S.M.E, Saryazdi, R. Unnthorsson, C. Richter, Gasification of woody biomasses and forestry residues: simulation, performance analysis, and environmental impact, Fermentation 7 (2021) 61 - 67. https://doi.org/10.3390/ FERMENTATION7020061.
DOI: 10.3390/fermentation7020061
Google Scholar
[3]
IRENA: Global Energy Transformation, A Roadmap to 2050. Available online: https://www.irena.org/media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_Report_G ET_2018.pdf. (accessed on 10 February 2022).
DOI: 10.1093/gmo/9781561592630.article.2271156
Google Scholar
[4]
IEA International Energy Agency, Renewables 2019—Analysis and Forecast to 2024. Available online: https://webstore.iea.org/market-report-series-renewables-2019. (accessed on 10 April 2022).
DOI: 10.1787/b3911209-en
Google Scholar
[5]
G.S. Devi, S. Vaishnavi, S. Srinath, B. Dutt, K.S. Rajmohan, Energy recovery from biomass using gasification, In: Current Developments in Biotechnology and Bioengineering: Resource Recovery from Wastes, Elsevier (2020) 363–382. https://doi.org/10.1016/B978-0-444- 64321-6.00019-7.
DOI: 10.1016/b978-0-444-64321-6.00019-7
Google Scholar
[6]
S. Singh Siwal, Q, Zhang, C, Sun, S, Thakur, V, Kumar Gupta, V. Kumar Thakur, Energy production from steam gasification processes and parameters that contemplate in biomass gasifier - a review. Bioresource Technology 297 (2019) 122481. https://doi.org/10.1016/j.biortech.2019.122481.
DOI: 10.1016/j.biortech.2019.122481
Google Scholar
[7]
V.R. Siemons, Identifying a role for biomass gasification in rural electrification in developing countries: the economic perspective, Biomass & Bioenergy 20 (2001) 272-285.
DOI: 10.1016/s0961-9534(00)00085-4
Google Scholar
[8]
M. Sharma, R. Kaushal, Performance and exhaust emission analysis of a variable compression ratio (VCR) dual fuel CI engine fuelled with producer gas generated from pistachio shells, Fuel 283 (2020) 118924. https://doi.org/10.1016/j. fuel.2020.118924.
DOI: 10.1016/j.fuel.2020.118924
Google Scholar
[9]
A. Blasi, G. Fiorenza, A. Verardi, Hydrogen from biomass. In: Current Trends and Future Developments on (Bio-) Membranes. Elsevier (2020) 43 - 73. https://doi.org/ 10.1016/B978- 0-12-817384-8.00003-0.
DOI: 10.1016/b978-0-12-817384-8.00003-0
Google Scholar
[10]
X. Zhuang, Y. Song, H. Zhan, X. Yin, C. Wu, Gasification performance of biowaste-derived hydrochar: the properties of products and the conversion processes. Fuel 260 (2020) 116320. https://doi.org/10.1016/j.fuel.2019.116320.
DOI: 10.1016/j.fuel.2019.116320
Google Scholar
[11]
M.L.V. Rios, A.M. Gonz´alez, E.E.S. Lora, O.A.A del Olmo, Reduction of Tar Generated during Biomass Gasification: A Review, Biomass & Bioenergy 108 (2018) 345 – 370. https://doi.org/10.1016/j.biombioe.2017.12.002.
DOI: 10.1016/j.biombioe.2017.12.002
Google Scholar
[12]
M. Asadullah, Biomass gasification gas cleaning for downstream applications: a comparative critical review, Renewable and Sustainable Energy Reviews, 40 (2014) 118-132.
DOI: 10.1016/j.rser.2014.07.132
Google Scholar
[13]
V.R. Patel, D. Patel, N. Varia, R.N. Patel, Co-gasification of lignite and waste wood in a pilot- scale (10kWe) downdraft gasifier, Energy 119 (2017) 834–844. https//doi.org/10.1016/j.energy.2016.11.057.
DOI: 10.1016/j.energy.2016.11.057
Google Scholar
[14]
P. Basu, Biomass gasification, pyrolysis and torrefaction, practical design and theory, 3rd Ed., Academic Press, Boston, USA, (2013).
Google Scholar
[15]
A. Molino, S. Chianese, D. Musmarra, Biomass gasification technology: The state of the art review, Journal of Energy Chemistry, 25 (2016) 10 – 25.
DOI: 10.1016/j.jechem.2015.11.005
Google Scholar
[16]
P. McKendry, Energy production from biomass (part 2): conversion technologies, Bioresource Technology, 83 (2002) 47-54.
DOI: 10.1016/s0960-8524(01)00119-5
Google Scholar
[17]
Z. Yao, S. You, T. Ge, C. Wang, Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation, Applied Energy, 209 (2018) 43 – 55.
DOI: 10.1016/j.apenergy.2017.10.077
Google Scholar
[18]
J.A. Ruiz, M.C. Juarez, M. P. Morales, P. Munoz, M.A. Mendivil, Biomass gasification for electricity generation: Review of current technology barriers, Renewable and Sustainable Energy Reviews, 18 (2013) 174-183.
DOI: 10.1016/j.rser.2012.10.021
Google Scholar
[19]
N.V. Gnanapragasam, M.A. Rosen, A review of hydrogen production using coal, biomass and other solid fuels, Biofuels 8 (2017) 725–745. https://doi.org/10.1080/17597269.2017.1302662.
DOI: 10.1080/17597269.2017.1302662
Google Scholar
[20]
G. Marrugo, C.F. Vald´es, F. Chejne, Biochar gasification: an experimental study on Colombian agro-industrial biomass residues in a fluidized bed, Energy Fuel 31 (2017) 9408–9421. https://doi.org/10.1021/acs.energyfuels.7b00665.
DOI: 10.1021/acs.energyfuels.7b00665
Google Scholar
[21]
R. Muthu Dinesh Kumar, R., Anand, Production of biofuel from biomass downdraft gasification and its applications. In: Advanced Biofuels: Applications, Technologies and Environmental Sustainability, Elsevier (2019) 129–151. https://doi.org/10.1016/B978-0-08-102791- 2.00005-2.
DOI: 10.1016/b978-0-08-102791-2.00005-2
Google Scholar
[22]
S. Chuayboon, S. Abanades, S. Rodat, Experimental analysis of continuous steam gasification of wood biomass for syngas production in a high-temperature particle-fed solar reactor, Chemical Engineering and Processing – Process Intensification, 125 (2018) 253 – 265. https://doi.org/10.1016/j.cep.2018.02.004.
DOI: 10.1016/j.cep.2018.02.004
Google Scholar
[23]
E. S. Aydin, O. Yucel, H. Sadikoglu, Experimental study on hydrogen-rich syngas production via gasification of pine cone particles and wood pellets in a fixed bed downdraft gasifier, International Journal of Hydrogen Energy, 44 (2019) 17389 – 17396.
DOI: 10.1016/j.ijhydene.2019.02.175
Google Scholar
[24]
M. U. Moni, A. A. Aziz, R. A. Kristanti, A. Yousuf, Syngas Production from Co-gasification of Forest Residue and Charcoal in a Pilot Scale Downdraft Reactor, Waste and Biomass Valorization 11 (2018) 635–651.
DOI: 10.1007/s12649-018-0513-5
Google Scholar
[25]
D.J. Stevens, Hot gas conditioning: Recent progress with larger - scale biomass gasification system, update and summary of recent progress, NREL Publication RS-510-29952, (2001).
DOI: 10.2172/786288
Google Scholar
[26]
R. Yin, R. Liu, J. Wu, X. Wu, C. Sun, C. Wu, Influence of particle size on performance of a pilot-scale fixed-bed gasification, Bioresource Technology, 119 (2012) 15 - 21.
DOI: 10.1016/j.biortech.2012.05.085
Google Scholar
[27]
Bioenergy for Sustainable Energy Access in Africa - Technology Value Chain Prioritisation Report. Information on https://assets.publishing.service.gov.uk/media/5ab4d869ed915d78b9a459bf/TVC_Prioritisation_Report_final_to_DFID.pdf.
Google Scholar
[28]
NIRAS-LTS, E4tech, AIGUASOL and Aston University (2021). Bioenergy for Sustainable Local Energy Services and Energy Access in Africa - Prospects for commercial biomass gasification in sub-Saharan Africa. For Carbon Trust and UK Government. London. Information on https://tea.carbontrust.com/wp-ontent/uploads/2021/09/BSEAA2Prospects- for-commercial-biomass-gasification-in-Sub-Saharan-Africa.pdf.
DOI: 10.1017/cbo9780511535864.020
Google Scholar
[29]
P.E. Akhator, A.I. Obanor, E.G. Sadjere, Design and development of a small-scale biomass downdraft gasifier, Nigerian Journey of Technology, 38 (2019) 922 – 930.
DOI: 10.4314/njt.v38i4.15
Google Scholar
[30]
I.H. Gado, O. Sanogo, T. Daho, B. Issa, P. Josue, Design, realization of a fixed bed downdraft gasifier and conduction of preliminary gasification tests with balanites aegyptiaca hulls, rice husk and charcoal, African Journal of Environmental Science and Technology, 13 (2019) 117-125.
DOI: 10.5897/ajest2018.2631
Google Scholar
[31]
I.M. Mobi, I. Ezeonuegbu, I.U. Onyenanu, Production of gasifier stove for use in Nigeria: an alternative energy awareness, International Journal of Engineering and Technical Research, 1 (2013) 123 – 129.
Google Scholar
[32]
S. Ojolo, S. Abolarin, O. Adegbenro, Development of a laboratory scale updraft biomass gasifier, International Journal of Manufacturing Systems, 2 (2012) 21-42.
DOI: 10.3923/ijmsaj.2012.21.42
Google Scholar
[33]
ASTM E870-82. Standard test method for analysis of wood fuels, ASTM International, West Conshohocken, PA, 2013, www.astm.org.
Google Scholar
[34]
L. Waldheim, T. Nilsson, Heating value of gases from biomass gasification. Report No. TPS- 01/16. Kvaerner, Chemrec AB, (2001).
Google Scholar
[35]
T.B. Reed, A. Das, Handbook of biomass downdraft gasifier engine systems, 1st Ed, Solar Energy Research Institute, (1988).
DOI: 10.2172/5206099
Google Scholar
[36]
A. Chaurasia, Modeling, simulation and optimization of downdraft gasifier: studies on chemical kinetics and operating conditions on the performance of the biomass gasification process, Energy 116 (Part 1) (2016) 1065 - 1076.
DOI: 10.1016/j.energy.2016.10.037
Google Scholar
[37]
O. Yucel, M. A. Hastaoglu, Kinetic modelling and simulation of throat downdraft gasifier, Fuel Process. Technol. 144 (2016) 145–154.
DOI: 10.1016/j.fuproc.2015.12.023
Google Scholar
[38]
C. Dejtrakulwong, S. Patumsawad, Four zones modelling of the downdraft biomass gasification process: effect of moisture content and air to fuel ratio, Energy Procedia 52 (2014) 142–149.
DOI: 10.1016/j.egypro.2014.07.064
Google Scholar
[39]
M. Simone, F. Barontini, C. Nicolella, L. Tognotti, Gasification of pelletized biomass in a pilot scale downdraft gasifier, Bioresource Technology, 116 (2012) 403 - 412.
DOI: 10.1016/j.biortech.2012.03.119
Google Scholar
[40]
P.N. Sheth, B.V. Babu, Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier, Bioresource Technology, 100 (2009) 3127-3133.
DOI: 10.1016/j.biortech.2009.01.024
Google Scholar
[41]
M. Simone, C. Nicolella, L. Tognotti, Numerical and experimental investigation of downdraft gasification of woody residues, Bioresource Technology 133 (2013) 92 - 101.
DOI: 10.1016/j.biortech.2013.01.056
Google Scholar
[42]
I. Janajreh, M. Al Shrah, Numerical and experimental investigation of downdraft gasification of wood chips, Energy Convers. Manag. 65 (2013) 783 - 792.
DOI: 10.1016/j.enconman.2012.03.009
Google Scholar
[43]
N. Couto, A. Rouboa, V. Silva, E. Monteiro, K. Bouziane, Influence of the biomassgasification processes on the final composition of syngas, Energy Procedia, 36 (2013) 596 – 606.
DOI: 10.1016/j.egypro.2013.07.068
Google Scholar
[44]
L. Wei, J.A. Thomasson, R.M. Bricka, R. Sui, J.R. Wooten, E.P. Columbus, Syngas quality evaluation for biomass gasification with a downdraft gasifier, American Society of Agricultural and Biological Engineers, 52 (2009) 21-37.
DOI: 10.13031/2013.25938
Google Scholar
[45]
D. Vera, F. Jurado, N.K. Margaritis, P. Grammelis, Experimental and economic study of a gasification plant fuelled with olive industry wastes, Energy for Sustainable Development, 23 (2014) 247 – 257.
DOI: 10.1016/j.esd.2014.09.011
Google Scholar
[46]
N. Striugas, K. Zakarauskas, A. Džiugys, R. Navakas, R. Paulauskas, An evaluation of performance of automatically operated multi-fuel downdraft gasifier for energy production, Applied Thermal Energy, 73 (2014) 1151 - 1159.
DOI: 10.1016/j.applthermaleng.2014.09.007
Google Scholar
[47]
M. Costa, M. La Villetta, D. Piazzullo, D.A. Cirillo, Phenomenological Model of a Downdraft Biomass Gasifier Flexible to the Feedstock Composition and the Reactor Design. Energies 14 (2014) 4226. https://doi.org/10.3390/en14144226.
DOI: 10.3390/en14144226
Google Scholar
[48]
P. Kumar, P.M.V. Subbarao, L.D. Kala, V.K. Vijay, Real-time performance assessment of open- top downdraft biomass gasifier system, Cleaner Engineering and Technology 7 (2022) 100448.
DOI: 10.1016/j.clet.2022.100448
Google Scholar