Parametric Study and Analysis of Modified Electromagnetic Band Gap in Frequency Notching of Ultra-Wide Band Antenna

Article Preview

Abstract:

This paper presents parametric study of dual band notch ultra wideband (UWB) antenna using modified electromagnetic band gap. The Electromagnetic Band Gap (EBG) comprises of two strip patched and an edge-located via with respect to ground for dual notch band. The study was presented in order to have an improved knowledge of EBG characteristics and its effect on the notching band of a small squared ultra wideband antenna of size 24 by 31 mm2 dual band notch using HFSS software. The antenna operates within the return loss (s11< -10dB) 3.2 to 12.3 GHz. The simulation results show that the notched band between 4.57 – 4.99 GHz and 7.96 – 8.32 GHz corresponding to WLAN and ITU respectively was achieved. The effect of gap distance between the field line and EBG was demonstrated as well and the position of via with respect to the ground as a means for notched band centre frequency tuning. The antenna could be considered a good candidate for any UWB applications that must avoid narrow band interference. The research gives ideas on the best placement position of EBG structure along field line in UWB antenna frequency notching technique.

You might also be interested in these eBooks

Info:

Pages:

151-164

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.J. Wu, C.H. Kang, K.H. Chen, J.H. Tarng, Study of an ultrawide band monopole antenna with a band-notched open-looped resonator, IEEE Transactions on Antennas and Propagation 58 (2010) 1890–1897.

DOI: 10.1109/tap.2010.2046839

Google Scholar

[2] G.H. Li, H.Q. Zhai, T. Li, X.Y. Ma, and C.H. Liang. Design of a compact UWB antenna integrated with GSM/WCDMA/WLAN bands, Progress in Electromagnetics Research 136 (2013) 409–419.

DOI: 10.2528/pier12120604

Google Scholar

[3] J.H. Wang, Y.Z. Yin, X. L. Liu, and T. Wang, Trapezoid. UWB antenna with dual band-notched characteristics for WiMAX/WLAN bands, Electronics Letters 49 (2013) 685-686.

DOI: 10.1049/el.2013.0934

Google Scholar

[4] M. Bod, H. R. Hassani, and M. M.S. Taheri. Compact UWB printed slot antenna with extra bluetooth, GSM, and GPS bands, IEEE Antennas and Wireless Propagation Letters 11 (2012) 531–534.

DOI: 10.1109/lawp.2012.2197849

Google Scholar

[5] K. Hongchan, K. Yeon, K. Wonjong, and S. P. Chul, Design and implementation of electromagnetic band‐gap embedded antenna for vehicle‐to‐everything communications in vehicular systems, ETRI Journal 41 (2019) 731-738.

DOI: 10.4218/etrij.2017-0197

Google Scholar

[6] S. Divya, Nivethitha, P. Lekha, and Vanaja, Design of ultra wide band antenna, SSRG International Journal of Electronics and Communication Engineering 5 (2018) 7-9.

Google Scholar

[7] J. Xu, D. Shen, X. Zhang, and K. Wu. A compact disc ultrawideband (UWB) antenna with quintuple band rejections, IEEE Antennas and Wireless Propagation Letters 11 (2012) 1517-1520.

DOI: 10.1109/lawp.2012.2234075

Google Scholar

[8] J. Xu, D.Y. Shen, J.F. Zheng, X.F. Zhang, K. Wu, A novel miniaturized UWB antenna with four band-notches, Microwave and Optical Technology Letters 55 (2013) 1202–1206.

DOI: 10.1002/mop.27546

Google Scholar

[9] W.S. Lee, D.Z. Kim, K.J. Kim, J.W. Yu, Wideband planar monopole antennas with dual band-notched characteristics, IEEE Transactions on Microwave Theory and Techniques 54 (2006) 2800–2805.

DOI: 10.1109/tmtt.2006.874895

Google Scholar

[10] N. Melouki, A. Hocini and T.A. Dendni, Performance enhancement of a compact patch antenna using an optimized EBG structure, Chinese Journal of Physics 69 (2021) 219-229.

DOI: 10.1016/j.cjph.2020.12.008

Google Scholar

[11] Y.L. Zhao, Y.C. Jiao, G. Zhao, L. Zhang, Y. Song, and Z.B. Wong. Compact planar monopole UWB antenna with band notched characteristic, Microwave and Optical Technology Letters 50 (2008) 2656–2658.

DOI: 10.1002/mop.23717

Google Scholar

[12] Y. Zhang, W. Hong, C. Yu, J.Y. Zhou, and Z.Q. Kuai. Design and implementation of planar ultra-wideband antennas with multiple notched bands based on stepped impedance resonators, IET Microwaves, Antennas & Propagation 3 (2009) 1051–1059.

DOI: 10.1049/iet-map.2008.0233

Google Scholar

[13] S.R. Emadian, C. Ghobadi, J. Nourinia, M. H. Mirmozafari, and J. Pourahmadazar. Bandwidth enhancement of CPW-Fed circle-like slot antenna with dual band-notched characteristic, IEEE Antennas and Wireless Propagation Letters 11 (2012) 543– 546.

DOI: 10.1109/lawp.2012.2199274

Google Scholar

[14] K.H. Kim and S.O. Park. Design of the band-rejected UWB antenna with the ring-shaped parasitic patch, Microwave and Optical Technology Letters 48 (2006) 1310–1313.

DOI: 10.1002/mop.21614

Google Scholar

[15] W. J. Lui, C. H. Cheng, and H.B. Zhu. Compact frequency notched ultra-wideband fractal printed slot antenna, IEEE Microwave and Wireless Components Letters 16 (2006) 224–226.

DOI: 10.1109/lmwc.2006.872102

Google Scholar

[16] Y. Zhang, W. Hong, C. Yu, Z.Q. Kuai, Y.D. Don, and J.Y. Zhou. Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line, IEEE Transactions on Antennas and Propagation 56 (2008) 3063–3068.

DOI: 10.1109/tap.2008.928815

Google Scholar

[17] X. L. Liu, Y. Z. Yin, P. G. Liu, J. H.Wang, and B. Xu. A CPW-fed dual band-notched UWB antenna with a pair of bended dual-L shape parasitic branches, Progress in Electromagnetics Research 136 (2013) 623–634.

DOI: 10.2528/pier12122507

Google Scholar

[18] M.C. Tang, S. Xiao, T. Deng, D. Wang, J. Guan, B. Wang and G.D. Ge, Compact UWB antenna with multiple band-notches for WiMAX and WLAN, IEEE Transactions on Antennas and Propagation 59 (2011) 1372–1376.

DOI: 10.1109/tap.2011.2109684

Google Scholar

[19] H. Liu and Z. Xu. Design of UWB monopole antenna with dual notched bands using one modified electromagnetic-band gap structure, The Scientific World Journal (2013) 1-9.

DOI: 10.1155/2013/917965

Google Scholar

[20] N. Jaglan, B.K. Kanaujia, S.D. Gupta, and S. Srivastava. Triple band notched UWB antenna design using electromagnetic band gap structures, Progress In Electromagnetics Research C 66 (2016) 139–147.

DOI: 10.2528/pierc16052304

Google Scholar

[21] N. Kushwaha and R. Kumar. Study of different shape electromagnetic band gap (EBG) structures for single and dual band applications, Journal of Microwaves, Optoelectronics and Electromagnetic Applications 13 (2014) 16-30.

DOI: 10.1590/s2179-10742014000100002

Google Scholar

[22] P. Lin and L.R. Cheng. UWB band-notched monopole antenna design using electromagnetic-band gap structures, IEEE Transactions on Microwave Theory and Techniques 59 (2011) 1074-1081.

DOI: 10.1109/tmtt.2011.2114090

Google Scholar

[23] Y. Fan, and R.S. Yahya, Applications of electromagnetic band-gap (EBG) structures in microwave antenna designs, In Proceedings of the third International Conference on Microwave and Millimeter Wave Technology, 17-19 August (2002) 528-531, Beijing, China.

DOI: 10.1109/icmmt.2002.1187753

Google Scholar

[24] N. kushwaha, and R. Kumar, Study of different shape electromagnetic band gap (EBG) structures for single and dual band applications, Journal of Microwaves, Optoelectronics and Electromagnetic Applications 13 (2014) 16-30.

DOI: 10.1590/s2179-10742014000100002

Google Scholar

[25] K. Shashank, B.V. Sravan, A. Namratha, S.A.W. Mohammad, R. Poonkuzhali, O K. Prakash, A. Tanweer, P.M.M. Manohara, A compact wideband antenna with detailed time domain analysis for wireless applications, AIN Shams Engineering Journal 11 (2020) 1131–1138.

DOI: 10.1016/j.asej.2020.02.008

Google Scholar

[26] D. Srinivas, and K. Ashwin, Compact UWB antenna with integrated triple notch bands for WBAN applications, IEEE Access Open Access Journal 7 (2019) 183-190.

DOI: 10.1109/access.2018.2885248

Google Scholar

[27] K. Gurpreet, and K. Rajeev, A survey on planar ultra-wideband antennas with band notch characteristics: Principle, design, and applications, International Journal of Electronics and Communication. (AEU) 109 (2019) 76–98.

DOI: 10.1016/j.aeue.2019.07.004

Google Scholar

[28] B. Warsha, S. Mrinal, A. Tanweer, P.M. Manohara, A. Jaume, A. Aurora, and D. Saumya, Design techniques of super-wideband antenna existing and future prospective, IEEE Access 7 (2019) 141241-141257.

DOI: 10.1109/access.2019.2943655

Google Scholar

[29] A. Qurratul, and C. Neela, Parametric study and analysis of band stop characteristics for a compact UWB antenna with tri-band notches, Journal of Microwaves, Optoelectronics and Electromagnetic Applications 17 (2018) 509-527.

DOI: 10.1590/2179-10742018v17i41314

Google Scholar

[30] G. Jiwan, and Y. C. Dong, Design of a compact ultrawideband u-shaped slot etched on a circular patch antenna with notch band characteristics for ultrawideband applications, International Journal of Antennas and Propagation (2019) 1-10.

DOI: 10.1155/2019/8090936

Google Scholar

[31] J. Sudhir, C. K. Joshi, A. Kumar, A. S. Rawat, EBG based M-layered novel microstrip patch antenna with improved bandwidth and gain, In Proceedings of the IEEE International Conference on Advances in Computing, Communication and Materials, 21-22 August (2020) 404-407, Dehradun, India.

DOI: 10.1109/icaccm50413.2020.9213000

Google Scholar

[32] L. Song, W. Gao, C.O. Chui and Y. Rahmat-Samii, Wideband frequency reconfigurable patch antenna with switchable slots based on liquid metal and 3-D printed microfluids, IEEE Transactions on Antennas and Propagation 67 (2019) 2886-2895.

DOI: 10.1109/tap.2019.2902651

Google Scholar

[33] Z. Hongjian, and C. Xia, Design of quintuple band-notched UWB antenna with copper coin shaped structure, Journal of Physics, Conference Series 1812 (2021) 012003.

DOI: 10.1088/1742-6596/1812/1/012003

Google Scholar

[34] V.B. Quinten, L. Sam, R.. Hendrik,and V. Jan, Coupled half-mode cavity-backed slot antenna for IR-UWB in air-filled SIW technology, Report presented at the Department of Information Technology (INTEC), IDLab Ghent University Ghent, Belgium (2019).

DOI: 10.1109/apusncursinrsm.2018.8609106

Google Scholar

[35] Q. Ain, and N. Chattoraj. Parametric study and analysis of band stop characteristics for a compact UWB antenna with tri-band notches, Journal of Microwaves, Optoelectronics and Electromagnetic Applications 17 (2018) 509-527.

DOI: 10.1590/2179-10742018v17i41314

Google Scholar

[36] C. K. Anand, S. T. Arun, M. Prabhaka, and S. Vadeyanpur, High gain patch antenna using EBG structures for WiMAX application, In: IOP Conference Series: Materials Science and Engineering 1070 (2021) 012073.

DOI: 10.1088/1757-899x/1070/1/012073

Google Scholar

[37] S.K. Vijay, S. Jain, M.R. Ahmad, B.H. Ahmad, S. Rawat, P. Singh, K. Ray, and A. Bandyopadhyay, UWB antenna with dual band notch characteristics, International Journal of Engineering and Advanced Technology 8 (2019) 61-65.

DOI: 10.1007/978-981-15-7561-7_9

Google Scholar

[38] B.K. Mahesh, and R. Neela, Compact stack EBG structure for enhanced isolation between stack patch antenna array elements for MIMO application, International Journal of Microwave and Wireless Technologies 13 (2021) 817-825.

DOI: 10.1017/s1759078720001543

Google Scholar

[39] A. YahieaX, and N. Lajos, Electromagnetic band gap structure for microstrip antenna gain enhancement at WLAN band, In Proceedings of the IEEE International RF and Microwave Conference, 14-16 December 2020, Kuala Lumpur, Malaysia.

DOI: 10.1109/rfm50841.2020.9344778

Google Scholar