[1]
M.A. Abd El-Aziz, M.A. Abo-Hashema, Measured effects on engineering properties of clayey subgrade using lime-Homra stabiliser, Int. J. Pavement Eng., 14(4), (2013) 321-332.
DOI: 10.1080/10298436.2012.655739
Google Scholar
[2]
C. C. Ikeagwuani, D. C. Nwonu, Emerging trends in expansive soil stabilisation: A review, J. Rock Mech. Geotech. Eng., 11(2), (2019) 423 - 440.
DOI: 10.1016/j.jrmge.2018.08.013
Google Scholar
[3]
E. S. Nnochiri, H. O. Emeka, Effects of coconut shell ash on lime-stabilized lateritic soil, MOJ Civ. Eng., 2(4), (2017) 140 - 143.
DOI: 10.15406/mojce.2017.02.00042
Google Scholar
[4]
B. T. Kamtchueng, V. L. Onana, W.Y. Fantong, A. Ueda, R. FD. Ntouala, M. HD. Wongolo, G.B. Ndongo, A. Ngo'oZe, V. KB. Kamgang, J. M. Ondoa, Geotechnical, chemical and mineralogical evaluation of lateritic soils in humid tropical area (Mfou, Central-Cameroon): Implications for road construction, Int. J. Geo-Engineering., 6(1), (2015),1 – 21.
DOI: 10.1186/s40703-014-0001-0
Google Scholar
[5]
O. E. Oluwatuyi, E. C. Ashaka, O. O. Ojuri, Cement stabilization treatment of lead and naphthalene contaminated lateritic soils, J. Environ. Eng. Landsc. Manag., 27(1), (2019), 41–48.
DOI: 10.3846/jeelm.2019.7778
Google Scholar
[6]
K. J. Osinubi, C. M. O. Nwaiwu, Design of compacted lateritic soil liners and covers, J. Geotech. Geoenvironmental Eng., 132(2), (2006), 203–213.
DOI: 10.1061/(asce)1090-0241(2006)132:2(203)
Google Scholar
[7]
A. A. Amadi, A. O. Eberemu, K. J. Osinubi, Strength consideration in the use of lateritic soil stabilized with fly ash as liners and covers in waste landfills, in GeoCongress., (2012), 3835 –3844.
DOI: 10.1061/9780784412121.393
Google Scholar
[8]
A. A. Amadi, K. J. Osinubi, Assessment of bentonite influence on hydraulic conductivity of lateritic soil, Int. J. Eng. Res. Africa., 3, (2010), 84–93.
DOI: 10.4028/www.scientific.net/jera.3.84
Google Scholar
[9]
L. Behak, Soil stabilization with rice husk ash, in: Dr Amanullah (Ed.), Rice: Technology and Production, IntechOpen, 2017, pp.30-45.
DOI: 10.5772/66311
Google Scholar
[10]
A. A. Firoozi, C. G. Olgun, A. A. Firoozi, M. S. Baghini, Fundamentals of soil stabilization, Int. J. geo-engineering, 8(26), (2017) 1 - 16.
DOI: 10.1186/s40703-017-0064-9
Google Scholar
[11]
E. A. Basha, R. Hashim, H. B. Mahmud, A. S. Muntohar, Stabilization of residual soil with rice husk ash and cement, Constr. Build. Mater., 19 (2005) 448 - 453.
DOI: 10.1016/j.conbuildmat.2004.08.001
Google Scholar
[12]
F. O. Ayodele, B. A. Alo, Assessment of operations of a capital city dumpsite in developing country: current practice, management and effects, Int. J. Environ. Waste Manag., 25(3), (2020) 340 - 355.
DOI: 10.1504/ijewm.2020.106294
Google Scholar
[13]
O. O. Ojuri, F. O. Ayodele, O. E. Oluwatuyi, Risk assessment and rehabilitation potential of a millennium city dumpsite in Sub-Saharan Africa, Waste Manag., 76 (2018) 621 – 628.
DOI: 10.1016/j.wasman.2018.03.002
Google Scholar
[14]
F. O. Ayodele, O. O. Popoola, Potential of snail shell and palm kernel shell powders in improving engineering properties of clay, J. Appl. Sci. Environ. Manag., 23(8), (2019) 1437 - 1444.
DOI: 10.4314/jasem.v23i8.5
Google Scholar
[15]
C. Arum, C. M. Ikumapayi, G. O. Aralepo, Ashes of biogenic wastes - Pozzolanicity, prospects for use, and effects on some engineering properties of concrete, Mater. Sci. Appl., 4 (2013) 521 - 527.
DOI: 10.4236/msa.2013.49064
Google Scholar
[16]
E. B. Oyetola, M. Abdullahi, The use of rice husk ash in low-cost sandcrete block production, Leonardo Electron. J. Pract. Technol., (8), (2006) 58 – 70.
Google Scholar
[17]
G. C. Cordeiro, R. D. Toledo Filho, E. De Moraes Rego Fairbairn, Use of ultrafine rice husk ash with high-carbon content as pozzolan in high performance concrete, Mater. Struct. Constr., 42(7) (2009) 983 – 992.
DOI: 10.1617/s11527-008-9437-z
Google Scholar
[18]
W.A. Yusuf, S.A. Yusuf, A.A.A. Adesope, O. Z. Adebayo, Determinants of rice import demand in Nigeria, J. Appl. Sci. Environ. Manag., 24(5) (2020) 923 – 931.
DOI: 10.4314/jasem.v24i5.30
Google Scholar
[19]
N. Kamai, L. O. Omoigui, A. Y. Kamara, Guide to rice production in Northern Nigeria guide to rice production in Northern Nigeria, Ibadan, Nigeria, (2020). 1- 27.
Google Scholar
[20]
U. A. Mohammed, S. Ibrahim, M. Hayatu, F. A. Mohammed, Rice (Oryza Sativa L.) production in Nigeria: Challenges and prospects rice, Dutse J. Pure Appl. Sci., 5(2b), (2019) 67 – 75.
Google Scholar
[21]
J. E. Sani, P. Yohanna, I. A. Chukwujama, Effect of rice husk ash admixed with treated sisal fibre on properties of lateritic soil as a road construction material, J. King Saud Univ. - Eng. Sci., 32 (2020) 11 – 18.
DOI: 10.1016/j.jksues.2018.11.001
Google Scholar
[22]
B. S. Thomas, Green concrete partially comprised of rice husk ash as a supplementary cementitious material – A comprehensive review, Renew. Sustain. Energy Rev., 82 (2018) 3913 – 3923.
DOI: 10.1016/j.rser.2017.10.081
Google Scholar
[23]
A. O. Eberemu, A. A. Amadi, K. J. Osinubi, The use of compacted tropical clay treated with rice husk ash as a suitable hydraulic barrier material in waste containment applications, Waste Biomass Valor, 4 (2013) 309 – 323.
DOI: 10.1007/s12649-012-9161-3
Google Scholar
[24]
F. O. Okafor, U. N. Okonkwo, Effects of rice husk ash on some geotechnical properties of lateritic soil, Niger. J. Technol., 28(1), (2009), 46 - 52.
Google Scholar
[25]
O. E. Oluwatuyi, O. O. Ojuri, Environmental performance of lime–rice husk ash stabilized lateritic soil contaminated with Lead or Naphthalene, Geotech. Geol. Eng., 35(6), (2017), 2947 -2964.
DOI: 10.1007/s10706-017-0294-9
Google Scholar
[26]
G. L. Oyekan, O. M. Kamiyo, A study on the engineering properties of sandcrete blocks produced with rice husk ash blended cement, J. Eng. Technol. Res., 3(3), (2011), 88 – 98.
Google Scholar
[27]
R. I. Umasabor, J. O. Okovido, Fire resistance evaluation of rice husk ash concrete, Heliyon, 4 (2018) 1 - 14.
DOI: 10.1016/j.heliyon.2018.e01035
Google Scholar
[28]
S. Malomo, Weathering and weathering products of Nigerian rocks - Engineering implications, in Tropical soils of Nigeria in engineering practice, Edited by S. A. Ola, A. A. Balkeda, Rotterdam., (1983), 39 - 60.
Google Scholar
[29]
BS 1377, Part 2: Classification tests. Methods of test for soils for civil engineering practices: British Standard Institution: London, UK, (1990).
Google Scholar
[30]
BS 1377, Part 2: Compaction - related tests. Methods of test for soils for civil engineering practices, British Standard Institution: London, UK, (1990).
Google Scholar
[31]
American Society of Testing Materials, Standard specification for coal fly ash and raw or calcined natural pozzolan for use, (2005).
DOI: 10.1520/c0618-00
Google Scholar
[32]
Federal Ministry of Works, Government of the federal republic of Nigeria, General specifications (Roads and Bridges) 2, (1997).
Google Scholar
[33]
Y. Wang, P. Guo, X. Li, H. Lin, Y. Liu, and H. Yuan, Behavior of fiber-reinforced and lime- stabilized clayey soil in triaxial tests, Appl. Sci., 9(900), (2019), 1 - 15.
DOI: 10.3390/app9050900
Google Scholar
[34]
C. Cherian, D. N. Arnepalli, A critical appraisal of the role of clay mineralogy in lime stabilization, Int. J. Geosynth. Gr. Eng., 1(8), (2015), 1 - 20.
DOI: 10.1007/s40891-015-0009-3
Google Scholar
[35]
M. Di Sante, E. Fratalocchi, F. Mazzieri, V. Brianzoni, Influence of delayed compaction on the compressibility and hydraulic conductivity of soil-lime mixtures, Eng. Geol., 185, (2015), 131 - 138.
DOI: 10.1016/j.enggeo.2014.12.005
Google Scholar
[36]
C. C. Ikeagwuani, D. C. Nwonu, C. Eze, I. Onuoha, Investigation of shear strength parameters and effect of different compactive effort on lateritic soil stabilized with coconut husk ash and lime, Niger. J. Technol., 36(4), (2018), 1016 – 1021.
DOI: 10.4314/njt.v36i4.4
Google Scholar
[37]
A. al-Swaidani, I. Hammoud, A. Meziab, Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil, J. Rock Mech. Geotech. Eng., 8(5), (2016), 714 - 725.
DOI: 10.1016/j.jrmge.2016.04.002
Google Scholar
[38]
M. O. Ogundipe, An investigation into the use of lime-stabilized clay as subgrade material, Int. J. Sci. Technol. Res., 2(10), (2013), 82 – 86.
Google Scholar
[39]
A. Muhmed, D. Wanatowski, Effect of lime stabilisation on the strength and microstructure of clay, IOSR J. Mech. Civ. Eng., 6(3), (2013), 87 – 94.
DOI: 10.9790/1684-638794
Google Scholar
[40]
A. K. Jha, P. V Sivapullaiah, Mechanism of improvement in the strength and volume change behavior of lime stabilized soil, Eng. Geol., 198 (2015) 53 – 64.
DOI: 10.1016/j.enggeo.2015.08.020
Google Scholar
[41]
S. Ganta, Soil stabilization with rice husk ash and lime sludge, Int. J. Res., 4(14), (2017) 1112 - 1119.
Google Scholar
[42]
T. R. Karatai, J. W. Kaluli, C. Kabubo, G. Thiong, Soil stabilization using rice husk ash and natural lime as an alternative to cutting and filling in road construction, J. Constr. Eng. Manag., 143(5), (2016), 1 – 5.
DOI: 10.1061/(asce)co.1943-7862.0001235
Google Scholar
[43]
W. M. G. D. Weerasekera, B. H. J. Pushpakumara, Potential use of rice husk ash with lime as a soil stabilizer in geotechnical applications, in 6th International Symposium on Advances in Civil and Environmental Engineering Practices for Sustainable Development, (2018), 20 - 27.
Google Scholar
[44]
M. Alhassan, Permeability of lateritic soil treated with lime and rice husk ash, Assumpt. Univ. J. Technol., 12(2), (2008), 115 – 120.
Google Scholar
[45]
L. Behak, W. P. Núñez, Effect of burning temperature on alkaline reactivity of rice husk ash with lime, Road Mater. Pavement Des., 14(3), (2013), 570 – 585.
DOI: 10.1080/14680629.2013.779305
Google Scholar
[46]
M. S. Pakbaz, S. S. Ganji, Effect of rice husk ash on the swelling pressure of bentonite soil stabilized with lime in the presence or lack of sulfate, J. Hydraul. Struct., 4(2), (2018), 17 - 26.
Google Scholar
[47]
H. Phai, A. Eisazadeh, Compaction properties of rice husk ash-lime-Bangkok clay mixtures, Key Eng. Mater., 803 (2019) 331–337.
DOI: 10.4028/www.scientific.net/kem.803.331
Google Scholar
[48]
A. Tangri, Effect of lime and RHA on clayey soil – A review, Mater. Today Proc., 37(2021) 2239 - 2241.
DOI: 10.1016/j.matpr.2020.07.683
Google Scholar