[1]
E. Ehab, B. Young, Behaviour of Normal and high Strength Concrete-Filled Compact Steel Tube Circular Stub Columns, Journal of Constructional Steel Research. 62 (2006) 706–715.
DOI: 10.1016/j.jcsr.2005.11.002
Google Scholar
[2]
Y.K.R. Gunawardena, F. Aslani, B. Uy, W.H. Kang and S. Hicks, Review of strength behaviour of circular concrete filled steel tubes under monotonic pure bending ,Journal of Constructional Steel Research. 158 (2019) 460–474.
DOI: 10.1016/j.jcsr.2019.04.010
Google Scholar
[3]
H.J. Lee, H.G. Park, I.R. Choi, Eccentric compression behavior of concrete-encasedand-filled steel tube columns with high-strength circular steel tube, Thin-Walled Structures. 144 (2019) 106339.
DOI: 10.1016/j.tws.2019.106339
Google Scholar
[4]
H.T. Hu, C.S. Huang, M.H. Wu and Y.M Wu, Numerical Analysis of Concrete-Filled Steel Tubes Subjected to Axial Force, Paper presented at the Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan, May (2002).
Google Scholar
[5]
M.-X. Xiong, D.-X. Xiong, J.Y.R. Liew, Behaviour of steel tubular members infilled with ultra high strength concrete, Journal of Constructional Steel Research. 138 (2017) 168–183.
DOI: 10.1016/j.jcsr.2017.07.001
Google Scholar
[6]
Y. Du, Z. Chen, Y.-B. Wang, J.Y, Richard Liew, Ultimate resistance behavior of rectangular concrete-filled tubular beam-columns made of high-strength steel, Journal of Constructional Steel Research. 133 (2017) 418–433.
DOI: 10.1016/j.jcsr.2017.02.024
Google Scholar
[7]
H.T Tai Thai, S. Thai , T. Ngo , B. Uy , W.H. Kanget and S.J. Hicks, Reliability considerations of modern design codes for CFST columns, Journal of Constructional Steel Research. 177 (2021) 106482.
DOI: 10.1016/j.jcsr.2020.106482
Google Scholar
[8]
H.J. Lee, H.G. Parka and I.R. Choib, Compression loading test for concrete-filled tubular columns with high-strength steel slender section, Journal of Constructional Steel Research. 159 (2019) 507–520.
DOI: 10.1016/j.jcsr.2019.04.040
Google Scholar
[9]
J. Wange, Q. Sun , J. Li, Experimental study on seismic behavior of high-strength circular concrete filled thin-walled steel tubular columns, Engineering Structures. 182 (2019) 403–415.
DOI: 10.1016/j.engstruct.2018.12.098
Google Scholar
[10]
A.L. Hoang, E. Fehling, B. Lai, D.K. Thai, N.V. Chau, Experimental study on structural performance of UHPC and UHPFRC columns confined with steel tube, Engineering Structures. 187 (2019) 457–477.
DOI: 10.1016/j.engstruct.2019.02.063
Google Scholar
[11]
M. Ahmed, Q.Q Liang, V.I. Patel, M.N.S. Hadi, Experimental and numerical investigations of eccentrically loaded rectangular concrete-filled double steel tubular columns, Journal of Constructional Steel Research. 167 (2020) 105949.
DOI: 10.1016/j.jcsr.2020.105949
Google Scholar
[12]
B. Chen, Z. Lai, Q. Yan, A.H. Varma, X. Yu, Experimental behavior and design of CFT-RC short columns subjected to concentric axial loading, Journal of Structural Engineering. 143 (2017) 04017148.
DOI: 10.1061/(asce)st.1943-541x.0001879
Google Scholar
[13]
H.T. Thai, B. Uy, M. Khan, Z. Tao, F. Mashiri, Numerical modelling of concrete-filled steel box columns incorporating high strength materials, Journal of Constructional Steel Research. 102 (2014) 256–265.
DOI: 10.1016/j.jcsr.2014.07.014
Google Scholar
[14]
G. Li, B. Chen, Z. Yang, Y. Feng, Experiment and numerical behaviour of eccentrically loaded high strength concrete filled high strength square steel tube stub columns, Thin-Walled Structures. 127 (2018) 483–499.
DOI: 10.1016/j.tws.2018.02.024
Google Scholar
[15]
Y. Cai, M. Su, X. Chen, B. Young, High strength steel square and rectangular tubular stub columns infilled with concrete, Journal of Constructional Steel Research. 179 (2021) 106536.
DOI: 10.1016/j.jcsr.2021.106536
Google Scholar
[16]
J.H. Wang, J. He and Y. Xiao, Fire behavior and performance of concrete-filled steel tubular columns, Journal of Constructional Steel Research. 157 (2019) 19–31.
DOI: 10.1016/j.jcsr.2019.02.012
Google Scholar
[17]
A. Kuranovas, D. Goode, A.K. Kvedaras and S. Zhong, Load-Bearing Capacity of Concrete-Filled Steel Columns, Journal of Civil Engineering And Management. 15.1 (2009) 21-33.
DOI: 10.3846/1392-3730.2009.15.21-33
Google Scholar
[18]
Eurocode 4, Design of composite steel and concrete structures,Part1-1:General rules—structural rules for buildings. Brussels:EN1994-1-1, CEN, (2004).
DOI: 10.3403/03221508
Google Scholar
[19]
L.H. Hana, Z. Taob and G.H Yaob, Behaviour of concrete-filled steel tubular members subjected to shear and constant axial compression, Thin-Walled Structures. 46.7-9 (2008) 765-780.
DOI: 10.1016/j.tws.2008.01.026
Google Scholar
[20]
Z. Ou, B. Chen, K.H. Hseih, M.W. Halling and P.J. Barr, Experimental and Analytical Investigation of Concrete Filled Steel Tubular Columns, Journal of Structural Engineering. 137.6 (2011) 635-645.
DOI: 10.1061/(asce)st.1943-541x.0000320
Google Scholar
[21]
L.L. Liu, Reliability analysis of concrete-filled tube column, Advanced Materials Research, 2012, pp.667-671.
DOI: 10.4028/scientific5/amr.446-449.667
Google Scholar
[22]
C. D. Eamon and E. Jensen, Reliability analysis of RC beams exposed to fire, Journal of Structural Engineering. 139.2 (2013) 212-220.
DOI: 10.1061/(asce)st.1943-541x.0000614
Google Scholar
[23]
Y. Jiang, G. Sun, Y. He, M. Beer and J. Zhang, A nonlinear model of failure function for reliability analysis of RC frame columns with tension failure, Engineering Structures . 98 (2015) 74–80.
DOI: 10.1016/j.engstruct.2015.04.030
Google Scholar
[24]
Y. Wang, M. Cao and H. Sun, Time-dependent reliability analysis of circular CFST stub columns under environmental corrosion, Pacific Science Review. 16 (2014) 201-206.
DOI: 10.1016/j.pscr.2015.04.002
Google Scholar
[25]
Y. Jiang, B. Song, J. Hu, H. Liang and S. Rao, Time-dependent reliability of corroded circular steel tube structures: Characterization of statistical models for material properties, Structures. 33 (2021) 792–803.
DOI: 10.1016/j.istruc.2021.04.091
Google Scholar
[26]
J. DOBRÝ, M. CUHÁK, P. CÍŽEK and V. BENKO, Nonlinear Analysis and Comparison of Design Methods for Slender Concrete Columns with Their Impact on Economy and Reliability , Solid State Phenomena, 2019, pp.197-202.
DOI: 10.4028/www.scientific.net/ssp.292.197
Google Scholar
[27]
A.T. Beck, W.L.A. de Oliveira, S. De Nardim and A.L.H.C. ElDebs, Reliability-based evaluation of design code provisions for circular concrete-filled steel columns, Engineering Structures. 31 (2009) 2299–2308.
DOI: 10.1016/j.engstruct.2009.05.004
Google Scholar
[28]
S. Chen, C. Hou, H. Zhang and L.H Han, Structural behaviour and reliability of CFST trusses with random initial imperfections, Thin-Walled Structures. 143 (2019) 106192.
DOI: 10.1016/j.tws.2019.106192
Google Scholar
[29]
N. Kernou, Y. Bouafia and KH. Belakhdar, Assessment of reliability and punching shear resistance of slabs, GRAĐEVINAR. 67.11 (2015) 1051-1062.
Google Scholar
[30]
N. Kernou, Y. Bouafia and KH. Belakhdar, Adaptive response surface by kriging using pilot points for structural reliability analysis, IOSR Journal of Mechanical and Civil Engineering. 9.5 (2013) 74-87.
DOI: 10.9790/1684-0957487
Google Scholar
[31]
N. Kernou and Y. Bouafia, Development of New Approach in Reliability Analysis for, Excellent Predictive Quality of the Approximation Using Adaptive Kriging, International Journal of Engineering Research in Africa, 2019, pp.44-63.
DOI: 10.4028/www.scientific.net/jera.44.44
Google Scholar
[32]
K.B. Misra, Reliability Analysis and Prediction, Elsevier, (1992).
Google Scholar
[33]
HIBBIT, Karlsson and Sorensen, INC. ABAQUS documentation version 6.14 ; (2014).
Google Scholar
[34]
Y. Jiang, G. Sun, Y. He, M. Beer, J. Zhang, A nonlinear model of failure function for reliability analysis of RC frame columns with tension failure, Engineering Structures. 98 (2015) 74–80.
DOI: 10.1016/j.engstruct.2015.04.030
Google Scholar
[35]
W.L.A. Oliveira, Theoretical experimental analysis of circular concrete filled steel columns. Doctoral thesis, Sao Carlos School of Engineering, University of Sao Paulo, (2008).
Google Scholar