Reliability Analysis and Comparative Study of Ordinary Concrete and High Performance Concrete Filled with Steel Tube under Axial Compression

Article Preview

Abstract:

Reliability and behaviour of composite columns is influenced by many factors. This paper presents a comparative study of the reliability and performance of square composite columns under axial compression, taking into account mechanical and geometric variability. The choice is opted for metal hollow profiles filled with ordinary concrete and high-performance concrete. In this study, a mechanic-reliability model to calculate the reliability index and the probability of failure of different columns is presented. The response surface method is used to accomplish this coupling in order to describe the uncertainties in a suitable model and to study their influence for a reliability assessment. The results show that the material and geometric characteristics of the columns have a significant influence on strength and reliability. The sensitivity of the random parameters of structural reliability is assessed from the proposed method.

You might also be interested in these eBooks

Info:

Pages:

245-261

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Ehab, B. Young, Behaviour of Normal and high Strength Concrete-Filled Compact Steel Tube Circular Stub Columns, Journal of Constructional Steel Research. 62 (2006) 706–715.

DOI: 10.1016/j.jcsr.2005.11.002

Google Scholar

[2] Y.K.R. Gunawardena, F. Aslani, B. Uy, W.H. Kang and S. Hicks, Review of strength behaviour of circular concrete filled steel tubes under monotonic pure bending ,Journal of Constructional Steel Research. 158 (2019) 460–474.

DOI: 10.1016/j.jcsr.2019.04.010

Google Scholar

[3] H.J. Lee, H.G. Park, I.R. Choi, Eccentric compression behavior of concrete-encasedand-filled steel tube columns with high-strength circular steel tube, Thin-Walled Structures. 144 (2019) 106339.

DOI: 10.1016/j.tws.2019.106339

Google Scholar

[4] H.T. Hu, C.S. Huang, M.H. Wu and Y.M Wu, Numerical Analysis of Concrete-Filled Steel Tubes Subjected to Axial Force, Paper presented at the Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan, May (2002).

Google Scholar

[5] M.-X. Xiong, D.-X. Xiong, J.Y.R. Liew, Behaviour of steel tubular members infilled with ultra high strength concrete, Journal of Constructional Steel Research. 138 (2017) 168–183.

DOI: 10.1016/j.jcsr.2017.07.001

Google Scholar

[6] Y. Du, Z. Chen, Y.-B. Wang, J.Y, Richard Liew, Ultimate resistance behavior of rectangular concrete-filled tubular beam-columns made of high-strength steel, Journal of Constructional Steel Research. 133 (2017) 418–433.

DOI: 10.1016/j.jcsr.2017.02.024

Google Scholar

[7] H.T Tai Thai, S. Thai , T. Ngo , B. Uy , W.H. Kanget and S.J. Hicks, Reliability considerations of modern design codes for CFST columns, Journal of Constructional Steel Research. 177 (2021) 106482.

DOI: 10.1016/j.jcsr.2020.106482

Google Scholar

[8] H.J. Lee, H.G. Parka and I.R. Choib, Compression loading test for concrete-filled tubular columns with high-strength steel slender section, Journal of Constructional Steel Research. 159 (2019) 507–520.

DOI: 10.1016/j.jcsr.2019.04.040

Google Scholar

[9] J. Wange, Q. Sun , J. Li, Experimental study on seismic behavior of high-strength circular concrete filled thin-walled steel tubular columns, Engineering Structures. 182 (2019) 403–415.

DOI: 10.1016/j.engstruct.2018.12.098

Google Scholar

[10] A.L. Hoang, E. Fehling, B. Lai, D.K. Thai, N.V. Chau, Experimental study on structural performance of UHPC and UHPFRC columns confined with steel tube, Engineering Structures. 187 (2019) 457–477.

DOI: 10.1016/j.engstruct.2019.02.063

Google Scholar

[11] M. Ahmed, Q.Q Liang, V.I. Patel, M.N.S. Hadi, Experimental and numerical investigations of eccentrically loaded rectangular concrete-filled double steel tubular columns, Journal of Constructional Steel Research. 167 (2020) 105949.

DOI: 10.1016/j.jcsr.2020.105949

Google Scholar

[12] B. Chen, Z. Lai, Q. Yan, A.H. Varma, X. Yu, Experimental behavior and design of CFT-RC short columns subjected to concentric axial loading, Journal of Structural Engineering. 143 (2017) 04017148.

DOI: 10.1061/(asce)st.1943-541x.0001879

Google Scholar

[13] H.T. Thai, B. Uy, M. Khan, Z. Tao, F. Mashiri, Numerical modelling of concrete-filled steel box columns incorporating high strength materials, Journal of Constructional Steel Research. 102 (2014) 256–265.

DOI: 10.1016/j.jcsr.2014.07.014

Google Scholar

[14] G. Li, B. Chen, Z. Yang, Y. Feng, Experiment and numerical behaviour of eccentrically loaded high strength concrete filled high strength square steel tube stub columns, Thin-Walled Structures. 127 (2018) 483–499.

DOI: 10.1016/j.tws.2018.02.024

Google Scholar

[15] Y. Cai, M. Su, X. Chen, B. Young, High strength steel square and rectangular tubular stub columns infilled with concrete, Journal of Constructional Steel Research. 179 (2021) 106536.

DOI: 10.1016/j.jcsr.2021.106536

Google Scholar

[16] J.H. Wang, J. He and Y. Xiao, Fire behavior and performance of concrete-filled steel tubular columns, Journal of Constructional Steel Research. 157 (2019) 19–31.

DOI: 10.1016/j.jcsr.2019.02.012

Google Scholar

[17] A. Kuranovas, D. Goode, A.K. Kvedaras and S. Zhong, Load-Bearing Capacity of Concrete-Filled Steel Columns, Journal of Civil Engineering And Management. 15.1 (2009) 21-33.

DOI: 10.3846/1392-3730.2009.15.21-33

Google Scholar

[18] Eurocode 4, Design of composite steel and concrete structures,Part1-1:General rules—structural rules for buildings. Brussels:EN1994-1-1, CEN, (2004).

DOI: 10.3403/03221508

Google Scholar

[19] L.H. Hana, Z. Taob and G.H Yaob, Behaviour of concrete-filled steel tubular members subjected to shear and constant axial compression, Thin-Walled Structures. 46.7-9 (2008) 765-780.

DOI: 10.1016/j.tws.2008.01.026

Google Scholar

[20] Z. Ou, B. Chen, K.H. Hseih, M.W. Halling and P.J. Barr, Experimental and Analytical Investigation of Concrete Filled Steel Tubular Columns, Journal of Structural Engineering. 137.6 (2011) 635-645.

DOI: 10.1061/(asce)st.1943-541x.0000320

Google Scholar

[21] L.L. Liu, Reliability analysis of concrete-filled tube column, Advanced Materials Research, 2012, pp.667-671.

DOI: 10.4028/scientific5/amr.446-449.667

Google Scholar

[22] C. D. Eamon and E. Jensen, Reliability analysis of RC beams exposed to fire, Journal of Structural Engineering. 139.2 (2013) 212-220.

DOI: 10.1061/(asce)st.1943-541x.0000614

Google Scholar

[23] Y. Jiang, G. Sun, Y. He, M. Beer and J. Zhang, A nonlinear model of failure function for reliability analysis of RC frame columns with tension failure, Engineering Structures . 98 (2015) 74–80.

DOI: 10.1016/j.engstruct.2015.04.030

Google Scholar

[24] Y. Wang, M. Cao and H. Sun, Time-dependent reliability analysis of circular CFST stub columns under environmental corrosion, Pacific Science Review. 16 (2014) 201-206.

DOI: 10.1016/j.pscr.2015.04.002

Google Scholar

[25] Y. Jiang, B. Song, J. Hu, H. Liang and S. Rao, Time-dependent reliability of corroded circular steel tube structures: Characterization of statistical models for material properties, Structures. 33 (2021) 792–803.

DOI: 10.1016/j.istruc.2021.04.091

Google Scholar

[26] J. DOBRÝ, M. CUHÁK, P. CÍŽEK and V. BENKO, Nonlinear Analysis and Comparison of Design Methods for Slender Concrete Columns with Their Impact on Economy and Reliability , Solid State Phenomena, 2019, pp.197-202.

DOI: 10.4028/www.scientific.net/ssp.292.197

Google Scholar

[27] A.T. Beck, W.L.A. de Oliveira, S. De Nardim and A.L.H.C. ElDebs, Reliability-based evaluation of design code provisions for circular concrete-filled steel columns, Engineering Structures. 31 (2009) 2299–2308.

DOI: 10.1016/j.engstruct.2009.05.004

Google Scholar

[28] S. Chen, C. Hou, H. Zhang and L.H Han, Structural behaviour and reliability of CFST trusses with random initial imperfections, Thin-Walled Structures. 143 (2019) 106192.

DOI: 10.1016/j.tws.2019.106192

Google Scholar

[29] N. Kernou, Y. Bouafia and KH. Belakhdar, Assessment of reliability and punching shear resistance of slabs, GRAĐEVINAR. 67.11 (2015) 1051-1062.

Google Scholar

[30] N. Kernou, Y. Bouafia and KH. Belakhdar, Adaptive response surface by kriging using pilot points for structural reliability analysis, IOSR Journal of Mechanical and Civil Engineering. 9.5 (2013) 74-87.

DOI: 10.9790/1684-0957487

Google Scholar

[31] N. Kernou and Y. Bouafia, Development of New Approach in Reliability Analysis for, Excellent Predictive Quality of the Approximation Using Adaptive Kriging,  International Journal of Engineering Research in Africa, 2019, pp.44-63.

DOI: 10.4028/www.scientific.net/jera.44.44

Google Scholar

[32] K.B. Misra, Reliability Analysis and Prediction, Elsevier, (1992).

Google Scholar

[33] HIBBIT, Karlsson and Sorensen, INC. ABAQUS documentation version 6.14 ; (2014).

Google Scholar

[34] Y. Jiang, G. Sun, Y. He, M. Beer, J. Zhang, A nonlinear model of failure function for reliability analysis of RC frame columns with tension failure, Engineering Structures. 98 (2015) 74–80.

DOI: 10.1016/j.engstruct.2015.04.030

Google Scholar

[35] W.L.A. Oliveira, Theoretical experimental analysis of circular concrete filled steel columns. Doctoral thesis, Sao Carlos School of Engineering, University of Sao Paulo, (2008).

Google Scholar