Effect of Tool Design on the Mechanical Properties of Bobbin Friction Stir Welded High-Density Polyethylene Sheets: Experimental Study

Article Preview

Abstract:

Welding polymers by the friction stir welding (FSW) technique is one assembly process among several known assembly techniques which consists in welding two materials without filler material. The FSW process is based on the generation of heat due to friction and material deformation under an axial force. Among the main aspects affecting material flow, the choice of welding tool geometry has become of great interest to improve the welds quality. The main objective of this work is the welding of polymers using the FSW technique. A new method of welding HDPE (high density polyethylene) plates, called BT-FSW (bobbin tool friction stir welding) was developed. Standard rectangular shape intended for the distribution of natural gas has been successfully welded by BT-FSW. Tensile tests and hardness measurements were carried out on samples cut from the welded sheets and the results were analyzed to compare the mechanical characteristics of the plates welded by the BT-FSW and conventional FSW (C-FSW) processes. The results of the comparative studies on the micro-hardness characteristics and mechanical properties of the two welding processes indicate that welding using the bobbin tool can significantly reduce hardness and improve both weld formation and mechanical properties of joints. This study showed that the design of the welding tool has a big impact on the weld strength. An improvement in the mechanical properties of the specimens welded by BT-FSW was observed to give a better welding quality for the polymers studied.

You might also be interested in these eBooks

Info:

Pages:

95-114

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, C.J. Dawes, Friction stir butt welding, International Patent Application No.PCT/GB92/02203,(1991).

Google Scholar

[2] C. Hamilton, S. Dymek, M. Kopyściański, A. Węglowska, A. Pietras, Numerically Based Phase Transformation Maps for Dissimilar Aluminum Alloys Joined by Friction Stir-Welding. Metals, 8(5) (2018) 324.

DOI: 10.3390/met8050324

Google Scholar

[3] R. Nandan, T. DebRoy, H. Bhadeshia, Recent advances in friction-stir welding–Process, weldment structure and properties. Progress in Materials Science, 53(6) (2008), 980–1023.

DOI: 10.1016/j.pmatsci.2008.05.001

Google Scholar

[4] Sudhir Kumar, Sachin Jambhale, Manish Maurya, Sanjeev Kumar, Saurabh Pandey, Evaluation of shear force and fractography of friction stir spot welded joints of AA 6082-T6 alloy, Journal of Engineering Research, Vol 10 No 1B (2022).

DOI: 10.36909/jer.10265

Google Scholar

[5] Parth Sas, Sushama Kadam, Yamini Chavhan, Minal Parate, Omkar Kotulkar, Vijaykumar S. Jatti, Friction Stir Welding of Polymer, international journal of advance research in science engineering, Vol n 6, Issue n 09, (2017).

Google Scholar

[6] B. Moulai Ali, B. Ould Chikh, H.M. Meddah, B. Bachir Bouiadjra, Plasticity Effect on the Mechanical Behavior of an Amorphous Polymer, International Journal of Engineering Research in Africa, 43(2019), 1-19.

DOI: 10.4028/www.scientific.net/jera.43.1

Google Scholar

[7] H. Khellafi, H.M. Meddah, B. Ould Chikh, B. Bouchouicha, M. Benguediab, M. Bendouba, Experimental and Numerical Analysis of the Polyvinyl Chloride (PVC) Mechanical Behavior Response, CMC, vol.49-50, no.1, (2015), 31-45.

Google Scholar

[8] A. Zaim, B. Bouchouicha, M. Meddah, B. Ould Chikh, The Stress Triaxiality Effect under Large Plastic Deformation of a Polybutylene Terephthalate (PBT), International Journal of Engineering Research in Africa, 34(2018), 13-28.

DOI: 10.4028/www.scientific.net/jera.34.13

Google Scholar

[9] A. Zaim, B. OuldChikh, B. Bouchouicha, Thermo-Mechanical Characterization of a Thermoplastic Copolyetherester (TPC): Experimental Investigation, Fibers and Polymers, 19(4) (2018), 734-741.

DOI: 10.1007/s12221-018-7455-1

Google Scholar

[10] R. Kumar, R. Singh, I. Ahuja, R. Penna, L. Feo, Weldability of thermoplastic materials for friction stir welding, A state of art review and future applications, Compos. Part B Eng, vol. 137. Elsevier, (2018), 1–15.

DOI: 10.1016/j.compositesb.2017.10.039

Google Scholar

[11] A. Zafar, M. Awang, R. Khan, Friction Stir Welding of Polymers: An Overview. In: Awang M. (eds) 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore (2017).

DOI: 10.1007/978-981-10-4232-4_2

Google Scholar

[12] M.K. Bilici, A. Yukler, Effects of welding parameters on friction stir spot welding of High density polyethylene sheets, Materials and Design, 33(1) (2012), 545-550.

DOI: 10.1016/j.matdes.2011.04.062

Google Scholar

[13] P.L. Threadgill, M.M.Z Ahmed, J.P. Martin, J.G. Perrett, B.P, Wynne, The use of bobbin tools for friction stir welding of Aluminium alloys, Mater. Sci. Forum (2010).

DOI: 10.4028/www.scientific.net/msf.638-642.1179

Google Scholar

[14] Y.X. Huang, L.Wan, S.X. Lv, J.C. Feng, Novel design of tool for joining hollow extrusion by friction stir welding, Science and Technology of Welding and Joining18(3) (2013), 239–246.

DOI: 10.1179/1362171812y.0000000096

Google Scholar

[15] M. Habba, M.M.Z. Ahmed, M.M. E. Seleman and A. EL-Nikhaily, An Analytical Model of Heat Generation for Friction Stir Welding Using Bobbin Tool Design, Journal of Petroleum and Mining Engineering, Vol 20, Issue1-Serial N130,(2018), 1-5.

DOI: 10.21608/jpme.2019.37963

Google Scholar

[16] G.Q. Wang, Y.H. Zhao, Y.Y. Tang, Research Progress of Bobbin Tool Friction Stir Welding of Aluminum Alloys, Acta Metall. Sin, 33(2020), 13–29.

DOI: 10.1007/s40195-019-00946-8

Google Scholar

[17] J. Zhang, G. Li, C.Q. Li, G.H. Luan, Weld.Join.11,50(2008).

Google Scholar

[18] A.L. Lafly, D. Alléhaux, F. Marie , C. Dalle Donne , G. Biallas, Microstructure and Mechanical Properties of the Aluminium Alloy 6056 Welded by Friction Stir Welding Techniques. Welding in the World, Vol 50 (2006), 98–106.

DOI: 10.1007/bf03263466

Google Scholar

[19] M. Esmaily, N. Mortazavi, W. Osikowicz, H. Hindsefelt, J.E. Svensson, M. Halvarsson, J. Martin and L.G. Johansson. Bobbin and Conventional Friction Stir Welding of thick extruded AA6005-T6 profiles. Materials & Design, 108(2016), 114–125.

DOI: 10.1016/j.matdes.2016.06.089

Google Scholar

[20] F. Marie, D. Alléhaux and B. Esmiller, Development of the Bobbin Tool technique on various aluminium alloys' TWI's Fifth International Symposium on Friction Stir Welding, Metz, France, 14-16 September (2004).

Google Scholar

[21] W. Ghabeche, K. Chaoui, Z. azari, A. Chateauneuf, Surface Degradation and crystallinity changes in HDPE-100 pipe subjected to chemical aggressive environments, French Congress of Mechanics, (2013).

Google Scholar

[22] H. Fadda, M. Kaddeche, N. Hamlaoui, K. Chaoui, Détermination des déformations résiduelles dans les tubes HDPE-100 par la méthode d'enlèvement de couches, Communication Science & technology N° 14. January 2014 COST.

Google Scholar

[23] M. Farshad, Two new criteria for the service life prediction of plastics pipes. Polymer Testing, 23(8), 967-972.

DOI: 10.1016/j.polymertesting.2004.04.010

Google Scholar

[24] Polyethylene (PE) Pipes and Fittings for Gas Distribution, www.groupe–chiali.com.

Google Scholar

[25] B. Guerin, Welding of aluminum alloys by friction stir welding bobbin tool technology, Thesis, National Superior School of Mines of Saint-Étienne, (2010).

Google Scholar

[26] Nejah Jemal, Qualification du domaine de soudabilité en soudage par friction malaxage, Thèse pour obtenir le grade de docteur, délivré par l'École Nationale Supérieure d'Arts et Métiers, 13 décembre (2011).

DOI: 10.51257/a-v1-bm7764

Google Scholar

[27] L. Alimi, W. Ghabeche, W. Chaoui, K. Chaoui, Mechanical properties study in extruded HDPE-80 pipe wall used for natural gas distribution , Matériaux & Techniques, 100(1)(2011),79–86.

DOI: 10.1051/mattech/2012004

Google Scholar

[28] L. Alimi, Comportement mécanique et rupture du PEHD sous environnements contrôlés, Thèse de Magister, Université d'Annaba, (2007).

Google Scholar

[29] ISO 6259-3:2015, Thermoplastics pipes, Determination of tensile properties, Part 3.

Google Scholar

[30] M. Kaid, M. Zemri, Comparison between FSW Welding and Butt Welding for High Density Polyethylene (HDPE), Conference Article (7th African Conference on Non Destructive Testing ACNDT 2016).

Google Scholar

[31] M. Kaddech, Study of the rupture of polyethylene under constant load, Thesis, University of Guelma, (2014).

Google Scholar

[32] J. Niglia, A. Cisilino, R. Seltzer, P. Frontini, Determination of impact fracture toughness of polyethylene using arc-shaped specimens, Engineering Fracture Mechanics,69(12)(2002), 1391– 1399.

DOI: 10.1016/s0013-7944(02)00008-5

Google Scholar

[33] P.Özbek, A. Christos P. Leevers, Fracture mechanics analysis of arc shaped specimens for pipe grade polymers, Polymer Testing, 28 (3) (2009), 357–361.

DOI: 10.1016/j.polymertesting.2009.02.001

Google Scholar

[34] S. Rehab Bekkouche, T. Lachouri, K. Chaoui , Characterization and Modeling of the Residual Deformations in the Polyethylene Pipes with a High Density of Gas Transport, American Journal of Science and Technology 2(2)(2015), 33-37.

Google Scholar

[35] B.A. Acha, M.M. Reboredo, N.E. Marcovich, Effect of coupling agents on the thermal and mechanical properties of polypropylene–jute fabric composites, Polymer International 55(9) (2006),1104– 1113.

DOI: 10.1002/pi.2080

Google Scholar

[36] H. Boulahia, Etude du comportement physico-mécanique de nouveaux biocomposites poudre de liège–PVC, Thèse de Doctorat LMD, université de Boumerdes,(2016).

Google Scholar

[37] M.H. Meddah, B. Ouldchikh, A. Benhamena, M. Benguediab, B. Bouchouicha, Effect of the mechanical properties and mode loading on the mechanical behavior of weldment: a numerical analysis, Materials Research,16(4) (2013), 853-859.

Google Scholar

[38] M. Tirenifi, B. OuldChikh, B. Bouchouicha, A. Bensari, Numerical comparison of cruciform weld and butt weld simulation and a study of fracture mechanics on two types of welds, Frattura ed Integrità Strutturale, 48 (2019), 357-369.

DOI: 10.3221/igf-esis.48.34

Google Scholar

[39] A. Bensari, B. Ould Chikh, B. Bouchouicha, M. Tirenifi, Numerical simulation of a steel weld joint and fracture mechanics study of a compact tension specimen for zones of weld joint, Frattura ed Integrità Strutturale, 47(2019), 17-29.

DOI: 10.3221/igf-esis.48.34

Google Scholar

[40] B. Bouchouicha, M. Zemri, A. Zaim, B. Ould Chikh, Estimation of the energy of crack propagation in different zones of a welded joint by the local technique, International Journal of Fracture,192(1)(2015), 107–116.

DOI: 10.1007/s10704-015-9989-1

Google Scholar

[41] K. Hachellaf, M. Meddah, B. OuldChikh, A. Lounis ,Mechanical behavior analysis of a friction stir welding (FSW) for welded joint applied to polymer materials, Frattura ed Integrità Strutturale, 13(47)(2019), 459-467.

DOI: 10.3221/igf-esis.47.36

Google Scholar

[42] A. Lounis, B. Ould Chikh, M. Meddah,L. Gueraiche, K. Hachellaf, Parametric Study of the mechanical behavior of FSSW welded polymer plates using a new form of welding tool, Defect and Diffusion Forum , 389(2018), 205-215.

DOI: 10.4028/www.scientific.net/ddf.389.205

Google Scholar

[43] D. Benyerou, B Ould Chikh, H Khellafi, M. Meddah, Parametric study of friction stir spot welding (FSSW) for polymer materials case of High Density Polyethylene sheets: experimental and numerical study, Frattura ed Integrità Strutturale, 55(2021), 145-158.

DOI: 10.3221/igf-esis.55.11

Google Scholar

[44] LI Jing-yong, Zhou Xiao-ping, Dong Chun-lin, Dong Ji-hong, Temperature Fields in 6082 Aluminum Alloy Samples Bobbin-Tool Friction Stir Welded [J]. Journal of Aeronautical Materials 33(5) (2013), 36-40.

Google Scholar

[45] B. Vijendra, A. Sharma, Induction heated tool assisted friction-stir welding (i-FSW): A novel hybrid process for joining of thermoplastics. J. Manuf. Process, 20(2015), 234–244.

DOI: 10.1016/j.jmapro.2015.07.005

Google Scholar

[46] S. Saeedy, M.K.B Givi, Investigation of the effects of critical process parameters of friction stir welding of polyethylene. Proc. Inst. Mech. Eng. Part B J. Eng, 225(2011), 1305–1310.

DOI: 10.1243/09544054jem1989

Google Scholar

[47] S.Inaniwa, Y. Kurabe, Y. Miyashita, H. Hori, Application of friction stir welding for several plastic materials. In Proceedings of the 1st International Joint Symposium on Joining and Welding, Osaka, Japan, 6–8 November 2013; Elsevier, (2013), 137–142.

DOI: 10.1533/978-1-78242-164-1.137

Google Scholar

[48] D. Mishra, S.K. Sahu, R.P. Mahto, S.K. Pal, K. Pal, Friction Stir Welding for Joining of Polymers. In Strengthening and Joining by Plastic Deformation; Dixit, U., Narayanan, R., Eds. Springer: Singapore, (2019), 123–162.

DOI: 10.1007/978-981-13-0378-4_6

Google Scholar

[49] A. Arici, S. Selale, Effects of tool tilt angle on tensile strength and fracture locations of friction stir welding of polyethylene. Sci. Technol. Weld. Join, 12(2007), 536–539.

DOI: 10.1179/174329307x173706

Google Scholar

[50] M. Moreno-Moreno, Y. Macea Romero, H. Rodríguez Zambrano, N.C. Restrepo-Zapata, C.R.M. Afonso, J. Unfried-Silgado, Mechanical and thermal properties of friction-stir welded joints of high density polyethylene using a non-rotational shoulder tool. Int. J. Adv. Manuf. Technol, 97(2018), 2489–2499.

DOI: 10.1007/s00170-018-2102-y

Google Scholar

[51] A. Mostafapour, E. Azarsa, A study on the role of processing parameters in joining polyethylene sheets via heat assisted friction stir welding: Investigating microstructure, tensile and flexural properties. Int. J. Phys. Sci, 7(2012), 647–654.

DOI: 10.5897/ijps11.1653

Google Scholar

[52] M. Pirizadeh et al Friction stir welding of thermoplastics using a newly designed tool. Mater Des, 54(2014), 342–347.

DOI: 10.1016/j.matdes.2013.08.053

Google Scholar