[1]
K.K. Alaneme, A.O. Aluko, Fracture toughness () and tensile properties of as-cast and age-hardened aluminium (6063)–silicon carbide particulate composites, Scientia Iranica, 19 (2012) 992-996.
DOI: 10.1016/j.scient.2012.06.001
Google Scholar
[2]
V.S. Aigbodion, Thermal ageing on the microstructure and mechanical properties of Al–Cu–Mg alloy/bagasse ash particulate composites, Journal of King Saud University - Engineering Sciences, 26 (2014) 144-151.
DOI: 10.1016/j.jksues.2013.01.003
Google Scholar
[3]
V.S. Aigbodion, S.B. Hassan, G.B. Nyior, T. Ause, Effect of Bagasse ash reinforcement on the wear behaviour of Al-Cu-Mg/Bagasse ash particulate composites, Acta Metall. Sin.(Engl. Lett.), 23 (2010) 81-89.
DOI: 10.1016/j.matdes.2009.10.055
Google Scholar
[4]
P.K. Krishnan, J.V. Christy, R. Arunachalam, A.-H.I. Mourad, R. Muraliraja, M. Al-Maharbi, V. Murali, M.M. Chandra, Production of aluminum alloy-based metal matrix composites using scrap aluminum alloy and waste materials: Influence on microstructure and mechanical properties, Journal of Alloys and Compounds, 784 (2019) 1047-1061.
DOI: 10.1016/j.jallcom.2019.01.115
Google Scholar
[5]
G. Itskos, P.K. Rohatgi, A. Moutsatsou, J.D. DeFouw, N. Koukouzas, C. Vasilatos, B.F. Schultz, Synthesis of A356 Al–high-Ca fly ash composites by pressure infiltration technique and their characterization, Journal of Materials Science, 47 (2012) 4042-4052.
DOI: 10.1007/s10853-012-6258-9
Google Scholar
[6]
B.C. Kandpal, J. kumar, H. Singh, Fabrication and characterisation of Al2O3/aluminium alloy 6061 composites fabricated by Stir casting, Materials Today: Proceedings, 4 (2017) 2783-2792.
DOI: 10.1016/j.matpr.2017.02.157
Google Scholar
[7]
M. Kok, Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites, Journal of Materials Processing Technology, 161 (2005) 381-387.
DOI: 10.1016/j.jmatprotec.2004.07.068
Google Scholar
[8]
Y. Xu, L. Yang, L. Zhan, H. Yu, M. Huang, Creep Mechanisms of an Al-Cu-Mg Alloy at the Macro- and Micro-Scale: Effect of the S'/S Precipitate, Materials (Basel), 12 (2019).
DOI: 10.3390/ma12182907
Google Scholar
[9]
S. Madhusudan, M.M.M. Sarcar, N.B.R.M. Rao, Mechanical properties of Aluminum-Copper(p) composite metallic materials, Journal of Applied Research and Technology, 14 (2016) 293-299.
DOI: 10.1016/j.jart.2016.05.009
Google Scholar
[10]
K.K. Alaneme, E.O. Adewuyi, Mechanical behavior of Al-Mg-Si matrix composites reinforced with alumina and bamboo leaf ash Metallurgical and Materials Engineering, 19 (2013) 177-187.
Google Scholar
[11]
S.A. Bello, I.A. Raheem, N.K. Raji, Study of tensile properties, fractography and morphology of aluminium (1xxx)/coconut shell micro particle composites, Journal of King Saud University - Engineering Sciences, 29 (2017) 269-277.
DOI: 10.1016/j.jksues.2015.10.001
Google Scholar
[12]
A. Apasi, P.B. Madaksona, D.S. Yawasa, V.S. Aigbodion, Wear Behaviour of Al-Si-Fe Alloy/Coconut Shell Ash Particulate Composites, Tribology in Industry, 34 (2012) 36-43.
Google Scholar
[13]
O.O. Daramola, A.A. Adediran, A.T. Fadumiye, Evaluation of the mechanical properties and corrosion behaviour of coconut shell ash reinforced aluminium (6063) alloy composites, Leonardo Electronic Journal of Practices and Technologies, (2015) 107-119.
Google Scholar
[14]
A.G.d. Reis, D.A.P. Reis, C. de Moura Neto, M.J.R. Barboza, F.P. Neto, J. Onõro, Creep behavior study at 500°C of laser nitrided Ti-6Al-4V alloy, Journal of Materials Research and Technology, 2 (2013) 48-51.
DOI: 10.1016/j.jmrt.2013.03.011
Google Scholar
[15]
S.B. Hassan, V.S. Aigbodion, Effects of eggshell on the microstructures and properties of Al–Cu–Mg/eggshell particulate composites, Journal of King Saud University - Engineering Sciences, 27 (2015) 49-56.
DOI: 10.1016/j.jksues.2013.03.001
Google Scholar
[16]
J.O. Agunsoye, S.I. Talabi, S.A. Bello, I.O. Awe, The Effects of Cocos Nucifera (Coconut Shell) on the Mechanical and Tribological Properties of Recycled Waste Aluminium Can Composites, Tribology in Industry, 36 (2014) 155-162.
Google Scholar
[17]
S.A. Bello, J.O. Agunsoye, J.A. Adebisi, F.O. Kolawole, B.H. Suleiman, Physical Properties of Coconut Shell Nanoparticles, Kathmandu University Journal of Science, Engineering and Technology, 12 (2106) 63-79.
DOI: 10.3126/kuset.v12i1.21566
Google Scholar
[18]
N. Perez, Fracture Mechanics,1, Springer, US, (2004).
Google Scholar
[19]
S.A. Bello, M.Y. Kolawole,Recycled Plastics and Nanoparticles for Green Production of Nano Structural Materials, in: O.V. Kharissova, L.M.T. MartínezB.I. Kharisov Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, Springer International Publishing, Cham, 2020, pp.1-33.
DOI: 10.1007/978-3-030-11155-7_93-1
Google Scholar
[20]
S.T. Peters, Handbook of Composites,2nd, Springer Science+Business Media Donlrecht, England, (1998).
Google Scholar
[21]
G.E. Dieter, Mechanical metallurgy,McGraw-Hill Book Company, New York, (1961).
Google Scholar
[22]
K.K. Alaneme, A.V. Fajemisin, N.B. Maledi, Development of aluminium-based composites reinforced with steel and graphite particles: structural, mechanical and wear characterization, Journal of Materials Research and Technology, 8 (2019) 670-682.
DOI: 10.1016/j.jmrt.2018.04.019
Google Scholar