Thermal Analysis of the Mechanism and Kinetics Parameters of the Metastable Phases Precipitation in the Al-Mg-Si Alloy

Article Preview

Abstract:

In this experimental study, the mechanism and kinetic parameters of the metastable phases precipitation in the Al-Mg-Si alloy were determined thermally by differential scanning calorimetric (DSC) analysis. All samples were treated up to 550 °C at heating rates of 5, 10, 20 and 30 °C/min. The apparent activation energy (56.74 kJ/mol) and the Avrami exponent (0.99), were determined by DSC from the non-isothermal method, using the Ozawa, Boswell and Kissinger methods while those obtained by isothermal method using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model were 51.04 kJ/mol and 1.18. The activation energies values indicate that the formation of the metastable phases was mainly controlled by the migration of Mg and Si. The values of n, are characteristics of a growth of plate after saturation of nucleation. The frequency factor (ko) calculated by the isothermal method is found to be 8.36×107 s-1.

You might also be interested in these eBooks

Info:

Pages:

17-27

Citation:

Online since:

July 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.J. Gao, Y. Li, Z.D. Wang, R.D.K. Misra, J.D. Li, G.M. Xu, Study of retrogression response in naturally and multi-step aged Al-Mg-Si automotive sheets, J. Alloys Compd. 753 (2018) 457-464.

DOI: 10.1016/j.jallcom.2018.04.198

Google Scholar

[2] S.K. Panigrahi, R. Jayaganthan, V. Pancholi, Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy,Mater. Des. 30 (2009) 1894-1901.

DOI: 10.1016/j.matdes.2008.09.022

Google Scholar

[3] D. Azzam, C.C. Menzemer, T.S. Srivatsan, The fracture behavior of an Al-Mg-Si alloy during cyclic fatigue, Mater Sci Eng A, A 527 (2010) 5341-534.

DOI: 10.1016/j.msea.2010.04.023

Google Scholar

[4] A. Tomsett, Light Metals 2020, The Minerals, Metals & Materials Society, ISSN 2367-1696 (2020).

DOI: 10.1007/978-3-030-36408-3

Google Scholar

[5] C.S. Tsao, C.Y. Chen, U.S. Jeng, T.Y. Kuo, Precipitation kinetics and transformation of metastable phases in Al–Mg–Si alloys, Acta Mater. 54 (2006) 4621-4631.

DOI: 10.1016/j.actamat.2006.06.005

Google Scholar

[6] A. Gaber, N. Afify, M.S. Mostafa, Gh. Abbady, Effect of heat treatment on the precipitation in Al–1 at.% Mg–x at.% Si (x = 0.6, 1.0 and 1.6) alloys, J. Alloys Compd. 477 (2009) 295-300.

DOI: 10.1016/j.jallcom.2008.11.009

Google Scholar

[7] H. He, L. Zhang, S. Li, X. Wu, H. Zhang and L. Li, Precipitation stages and reaction kinetics of AlMgSi alloys during the artificial aging process monitored by in-situ electrical resistivity measurement method, Metals. 8 (2018) 39.

DOI: 10.3390/met8010039

Google Scholar

[8] S.L. Demakov, M.S. Karabanalov, and O.A. Oleneva, Transformation of metastable β-solid solution in alloy VTI-4, Met. Sci. Heat Treat. 56 (2015) 9-10.

DOI: 10.1007/s11041-015-9787-4

Google Scholar

[9] H. Nemour, D.M. Ibrahim, A. Triki, The effect of heavy cold plastic deformation on the non-isothermal kinetics and the precipitation sequence of metastable phases in an Al–Mg–Si alloy, J Therm Anal Calorim.123 (2016) 19-26.

DOI: 10.1007/s10973-015-4915-3

Google Scholar

[10] S. Pogatscher, H. Antrekowitsch, P.J. Uggowitzer, Influence of starting temperature on differential scanning calorimetry measurements of an Al–Mg–Si alloy, Mater. Lett. 100 (2013) 163-165.

DOI: 10.1016/j.matlet.2013.03.003

Google Scholar

[11] A.M. Ali, A-F. Gaber, K. Matsuda, S. Ikeno, Investigation and characterization of the nanoscale precipitation sequence and their kinetics in Ale1.0% Mg2Sie0.4 wt% Sie0.5Cu (wt%) alloy, Mater. Chem. Phys. Xxx (2014) 1-8.

DOI: 10.1016/j.matchemphys.2014.05.015

Google Scholar

[12] M.I. Daoudi, A. Triki, A. Redjaimia, DSC study of the kinetic parameters of the metastable phases formation during non-isothermal annealing of an Al–Si–Mg alloy, J Therm Anal Calorim. 104 (2011) 627-633.

DOI: 10.1007/s10973-010-1099-8

Google Scholar

[13] Y. Birol. DSC analysis of the precipitation reaction in AA6005 alloy, J. Therm. Anal. Calorim. 93 (2008) 3 977-981.

DOI: 10.1007/s10973-007-8686-3

Google Scholar

[14] Y. Birol. DSC analysis of the precipitation reactions in the alloy AA6082, J. Therm. Anal. Calorim.83(2006) 1 219-222.

DOI: 10.1007/s10973-005-6950-y

Google Scholar

[15] J. Osten, B. Milkereit, C. Schick and O. Kessler, Dissolution and Precipitation Behaviour during ContinuousHeating of Al–Mg–Si Alloys in a Wide Range of Heating Rates, Mater. 8 (2015) 2830-2848.

DOI: 10.3390/ma8052830

Google Scholar

[16] M.I. Daoudi, A. Triki, A. Redjaimia and C. Yamina, The determination of the activation energy varying with the precipitated fraction of β" metastable phase in an Al–Si–Mg alloy using non-isothermal dilatometry, Thermochim. Acta. 577 (2014) 5-10.

DOI: 10.1016/j.tca.2013.12.007

Google Scholar

[17] A. Saboori, M. Pavese, C. Badini and A.R. Eivani, Studying the age hardening kinetics of A357 aluminum alloys through the Johnson–Mehl–Avrami theory, Met. Powder. Rep. 72 (2017) 420–424.

DOI: 10.1016/j.mprp.2016.08.006

Google Scholar

[18] Z. Chen, K. Liu, E. Elgallad, F. Breton and X.G. Chen, Differential scanning calorimetry fingerprints of various heat-treatment tempers of different aluminum alloys, Metals. 10 (2020) 763.

DOI: 10.3390/met10060763

Google Scholar

[19] F.D. Geuser, W. Lefebvre and D. Blavette, 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy, Philos. Mag. Lett. 86 (2006) 4 227-234.

DOI: 10.1080/09500830600643270

Google Scholar

[20] T. Saito, S. Muraishi, C. Marioara, S. Andersen, J. RØYSET, and R. Holmestad, The effects of low Cu additions and predeformation on the precipitation in a 6060 Al-Mg-Si Alloy, Metall. Mater. Trans. A. 44A (2013) 4124–35.

DOI: 10.1007/s11661-013-1754-3

Google Scholar

[21] A.G. Frøseth and R. Høier, Bonding in MgSi and Al-Mg-Si compounds relevant to Al-Mg-Si alloys, Phys. Rev. B. 67 (2003) 224106.

DOI: 10.1103/physrevb.67.224106

Google Scholar

[22] H.E. Kissinger, Reaction kinetics in differential thermal analysis, J. Anal. Chem. 29 (1957) 1702-1706.

DOI: 10.1021/ac60131a045

Google Scholar

[23] T. Ozawa, Estimate of activation energy by isoconversion methods, Thermochim Acta. 203 (1992) (13) 159-165.

DOI: 10.1016/0040-6031(92)85192-x

Google Scholar

[24] P.G. Boswell, On the calculation of activation-energies using a modified Kissinger method, J. Therm. Anal. 18 (1980) (2) 353-358.

Google Scholar

[25] J. Kongthep and P. Juijerm, Kinetics of precipitation hardening phase inaluminium alloy AA 6110, Mater. Sci. Technol. 30 (2014) 14.

DOI: 10.1179/1743284713y.0000000488

Google Scholar

[26] Y.M. Kim, S.W. Choi, Y.C. Kim, C.S. Kang and S.K. Hong, Influence of the Precipitation of Secondary Phase on the Thermal Diffusivity Change of Al-Mg2Si Alloys, Appl. Sci. 8 (2018) (2039).

DOI: 10.3390/app8112039

Google Scholar

[27] S.K. Panigrahi, R. Jayaganthan,V. Pancholi, M. Gupta, A DSC study on the precipitation kinetics of cryorolled Al 6063 alloy, Mater. Chem. Phys.122 (2010) 188-193.

DOI: 10.1016/j.matchemphys.2010.02.032

Google Scholar

[28] A. Gaber, A. Mossad Ali, K. Matsuda, T. Kawabata, T. Yamazaki, S. Ikeno, Study of the developed precipitates in Al–0.63Mg–0.37Si–0.5Cu (wt.%) alloy by using DSC and TEM techniques, J. Alloys Compd. 432 (2007) 149-155.

DOI: 10.1016/j.jallcom.2006.06.004

Google Scholar

[29] V.N. Grau, A. Cuniberti, A. Tolley, V.C. Riglos, M. Stipcich, Solute clustering behavior between 293K and 373K in a 6082 Aluminum alloy, J. Alloys Compd. 684 (2016) 481-487.

DOI: 10.1016/j.jallcom.2016.05.197

Google Scholar

[30] N. Afify, A. Gaber, M.S. Mostafa, Gh. Abbady, Influence of Si concentration on the precipitation in Al-1 at.% Mg alloy, J. Alloys Compd. 462 (2008) 80-87.

DOI: 10.1016/j.jallcom.2007.08.043

Google Scholar

[31] Y. Aouabdia, A. Boubertakh, S. Hamamda, Precipitation kinetics of the hardening phase in two 6061 aluminium alloys, Mater. Lett. 64 (2010) 353-356.

DOI: 10.1016/j.matlet.2009.11.014

Google Scholar

[32] F. Sahnoune, D. Redaoui and M. Fatmi, Kinetic parameters of Al–Si spinel crystallization from Algerian tamazarte kaolin, High Temp High Press. 46 (2017) 497-508.

Google Scholar

[33] M. Fatmi, A. Djemli, A. Ouali, T. Chihia, M.A. Ghebouli, H. Belhouchet, Heat treatment and kinetics of precipitation of β-Mg17Al12 phase in AZ91 alloy, Results Phys. 10 (2018) 693-698.

DOI: 10.1016/j.rinp.2018.07.009

Google Scholar

[34] A. Gaber, M.A. Gaffar, M.S. Mostafa, E.F. Abo Zeid, Precipitation kinetics of Al–1.12 Mg2Si–0.35 Si and Al–1.07 Mg2Si–0.33 Cu alloys, J. Alloys Compd. 429 (2007) 167-175.

DOI: 10.1016/j.jallcom.2006.04.021

Google Scholar

[35] A. Khalfallah, A. A. Raho, S. Amzert, A. Djemli, Precipitation kinetics of GP zones, metastable η' phase and equilibrium η phase in Al−5.46wt. %Zn−1.67wt.%Mg alloy, Trans. Nonferrous Met. Soc. China. 29 (2019) 233-241.

DOI: 10.1016/s1003-6326(19)64932-0

Google Scholar

[36] E. F. Abo Zeid and A. Gaber, Investigation of nanoscale precipitates developed in Al–0.73Mg–0.45Si–0.34Cu–0.21Cr–0.20Fe alloy, Mater. Sci. Technol. 27 (2011) 487-493.

DOI: 10.1179/174328409x422022

Google Scholar

[37] M. Romero, J. Martín-Márquez, J.Ma. Rincón, Kinetic of mullite formation from a porcelain stoneware body for tiles production. J Eur Ceram Soc. 26 (2006) 1647-1652.

DOI: 10.1016/j.jeurceramsoc.2005.03.235

Google Scholar

[38] D. Redaoui, F. Sahnoune, M. Heraiz, H. Belhouchet, M. Fatmi, Thermal decomposition kinetics of Algerian Tamazarte kaolinite by thermogravimetric analysis, Trans. Nonferrous Met. Soc. China. 27 (2017) 1849-1855.

DOI: 10.1016/s1003-6326(17)60208-5

Google Scholar

[39] A. Gaber, K. Matsuda, A.M. Ali, Y. Zou, S. Ikeno, DSC and HRTEM investigation of the precipitates in Al–1.0%Mg 2 Si–0.5%Ag alloy, Mater. Sci. Technol. 20 (2004)1627-1631.

DOI: 10.1179/026708304x6086

Google Scholar

[40] J.H. Kim, C. Daniel Marioara, R. Holmestad, E. Kobayashi, T. Sato, Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Al-Mg-Si alloys, Mater. Sci. Eng. A 560 (2013) 154-162.

DOI: 10.1016/j.msea.2012.09.051

Google Scholar

[41] M.J. Straink, Analysis of aluminum based alloys by calorimetry:Quantitative analysis of reactions and reaction kinetics, Int Mater Rev. 49 (2004) 191-226.

Google Scholar