[1]
G.J. Gao, Y. Li, Z.D. Wang, R.D.K. Misra, J.D. Li, G.M. Xu, Study of retrogression response in naturally and multi-step aged Al-Mg-Si automotive sheets, J. Alloys Compd. 753 (2018) 457-464.
DOI: 10.1016/j.jallcom.2018.04.198
Google Scholar
[2]
S.K. Panigrahi, R. Jayaganthan, V. Pancholi, Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy,Mater. Des. 30 (2009) 1894-1901.
DOI: 10.1016/j.matdes.2008.09.022
Google Scholar
[3]
D. Azzam, C.C. Menzemer, T.S. Srivatsan, The fracture behavior of an Al-Mg-Si alloy during cyclic fatigue, Mater Sci Eng A, A 527 (2010) 5341-534.
DOI: 10.1016/j.msea.2010.04.023
Google Scholar
[4]
A. Tomsett, Light Metals 2020, The Minerals, Metals & Materials Society, ISSN 2367-1696 (2020).
DOI: 10.1007/978-3-030-36408-3
Google Scholar
[5]
C.S. Tsao, C.Y. Chen, U.S. Jeng, T.Y. Kuo, Precipitation kinetics and transformation of metastable phases in Al–Mg–Si alloys, Acta Mater. 54 (2006) 4621-4631.
DOI: 10.1016/j.actamat.2006.06.005
Google Scholar
[6]
A. Gaber, N. Afify, M.S. Mostafa, Gh. Abbady, Effect of heat treatment on the precipitation in Al–1 at.% Mg–x at.% Si (x = 0.6, 1.0 and 1.6) alloys, J. Alloys Compd. 477 (2009) 295-300.
DOI: 10.1016/j.jallcom.2008.11.009
Google Scholar
[7]
H. He, L. Zhang, S. Li, X. Wu, H. Zhang and L. Li, Precipitation stages and reaction kinetics of AlMgSi alloys during the artificial aging process monitored by in-situ electrical resistivity measurement method, Metals. 8 (2018) 39.
DOI: 10.3390/met8010039
Google Scholar
[8]
S.L. Demakov, M.S. Karabanalov, and O.A. Oleneva, Transformation of metastable β-solid solution in alloy VTI-4, Met. Sci. Heat Treat. 56 (2015) 9-10.
DOI: 10.1007/s11041-015-9787-4
Google Scholar
[9]
H. Nemour, D.M. Ibrahim, A. Triki, The effect of heavy cold plastic deformation on the non-isothermal kinetics and the precipitation sequence of metastable phases in an Al–Mg–Si alloy, J Therm Anal Calorim.123 (2016) 19-26.
DOI: 10.1007/s10973-015-4915-3
Google Scholar
[10]
S. Pogatscher, H. Antrekowitsch, P.J. Uggowitzer, Influence of starting temperature on differential scanning calorimetry measurements of an Al–Mg–Si alloy, Mater. Lett. 100 (2013) 163-165.
DOI: 10.1016/j.matlet.2013.03.003
Google Scholar
[11]
A.M. Ali, A-F. Gaber, K. Matsuda, S. Ikeno, Investigation and characterization of the nanoscale precipitation sequence and their kinetics in Ale1.0% Mg2Sie0.4 wt% Sie0.5Cu (wt%) alloy, Mater. Chem. Phys. Xxx (2014) 1-8.
DOI: 10.1016/j.matchemphys.2014.05.015
Google Scholar
[12]
M.I. Daoudi, A. Triki, A. Redjaimia, DSC study of the kinetic parameters of the metastable phases formation during non-isothermal annealing of an Al–Si–Mg alloy, J Therm Anal Calorim. 104 (2011) 627-633.
DOI: 10.1007/s10973-010-1099-8
Google Scholar
[13]
Y. Birol. DSC analysis of the precipitation reaction in AA6005 alloy, J. Therm. Anal. Calorim. 93 (2008) 3 977-981.
DOI: 10.1007/s10973-007-8686-3
Google Scholar
[14]
Y. Birol. DSC analysis of the precipitation reactions in the alloy AA6082, J. Therm. Anal. Calorim.83(2006) 1 219-222.
DOI: 10.1007/s10973-005-6950-y
Google Scholar
[15]
J. Osten, B. Milkereit, C. Schick and O. Kessler, Dissolution and Precipitation Behaviour during ContinuousHeating of Al–Mg–Si Alloys in a Wide Range of Heating Rates, Mater. 8 (2015) 2830-2848.
DOI: 10.3390/ma8052830
Google Scholar
[16]
M.I. Daoudi, A. Triki, A. Redjaimia and C. Yamina, The determination of the activation energy varying with the precipitated fraction of β" metastable phase in an Al–Si–Mg alloy using non-isothermal dilatometry, Thermochim. Acta. 577 (2014) 5-10.
DOI: 10.1016/j.tca.2013.12.007
Google Scholar
[17]
A. Saboori, M. Pavese, C. Badini and A.R. Eivani, Studying the age hardening kinetics of A357 aluminum alloys through the Johnson–Mehl–Avrami theory, Met. Powder. Rep. 72 (2017) 420–424.
DOI: 10.1016/j.mprp.2016.08.006
Google Scholar
[18]
Z. Chen, K. Liu, E. Elgallad, F. Breton and X.G. Chen, Differential scanning calorimetry fingerprints of various heat-treatment tempers of different aluminum alloys, Metals. 10 (2020) 763.
DOI: 10.3390/met10060763
Google Scholar
[19]
F.D. Geuser, W. Lefebvre and D. Blavette, 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy, Philos. Mag. Lett. 86 (2006) 4 227-234.
DOI: 10.1080/09500830600643270
Google Scholar
[20]
T. Saito, S. Muraishi, C. Marioara, S. Andersen, J. RØYSET, and R. Holmestad, The effects of low Cu additions and predeformation on the precipitation in a 6060 Al-Mg-Si Alloy, Metall. Mater. Trans. A. 44A (2013) 4124–35.
DOI: 10.1007/s11661-013-1754-3
Google Scholar
[21]
A.G. Frøseth and R. Høier, Bonding in MgSi and Al-Mg-Si compounds relevant to Al-Mg-Si alloys, Phys. Rev. B. 67 (2003) 224106.
DOI: 10.1103/physrevb.67.224106
Google Scholar
[22]
H.E. Kissinger, Reaction kinetics in differential thermal analysis, J. Anal. Chem. 29 (1957) 1702-1706.
DOI: 10.1021/ac60131a045
Google Scholar
[23]
T. Ozawa, Estimate of activation energy by isoconversion methods, Thermochim Acta. 203 (1992) (13) 159-165.
DOI: 10.1016/0040-6031(92)85192-x
Google Scholar
[24]
P.G. Boswell, On the calculation of activation-energies using a modified Kissinger method, J. Therm. Anal. 18 (1980) (2) 353-358.
Google Scholar
[25]
J. Kongthep and P. Juijerm, Kinetics of precipitation hardening phase inaluminium alloy AA 6110, Mater. Sci. Technol. 30 (2014) 14.
DOI: 10.1179/1743284713y.0000000488
Google Scholar
[26]
Y.M. Kim, S.W. Choi, Y.C. Kim, C.S. Kang and S.K. Hong, Influence of the Precipitation of Secondary Phase on the Thermal Diffusivity Change of Al-Mg2Si Alloys, Appl. Sci. 8 (2018) (2039).
DOI: 10.3390/app8112039
Google Scholar
[27]
S.K. Panigrahi, R. Jayaganthan,V. Pancholi, M. Gupta, A DSC study on the precipitation kinetics of cryorolled Al 6063 alloy, Mater. Chem. Phys.122 (2010) 188-193.
DOI: 10.1016/j.matchemphys.2010.02.032
Google Scholar
[28]
A. Gaber, A. Mossad Ali, K. Matsuda, T. Kawabata, T. Yamazaki, S. Ikeno, Study of the developed precipitates in Al–0.63Mg–0.37Si–0.5Cu (wt.%) alloy by using DSC and TEM techniques, J. Alloys Compd. 432 (2007) 149-155.
DOI: 10.1016/j.jallcom.2006.06.004
Google Scholar
[29]
V.N. Grau, A. Cuniberti, A. Tolley, V.C. Riglos, M. Stipcich, Solute clustering behavior between 293K and 373K in a 6082 Aluminum alloy, J. Alloys Compd. 684 (2016) 481-487.
DOI: 10.1016/j.jallcom.2016.05.197
Google Scholar
[30]
N. Afify, A. Gaber, M.S. Mostafa, Gh. Abbady, Influence of Si concentration on the precipitation in Al-1 at.% Mg alloy, J. Alloys Compd. 462 (2008) 80-87.
DOI: 10.1016/j.jallcom.2007.08.043
Google Scholar
[31]
Y. Aouabdia, A. Boubertakh, S. Hamamda, Precipitation kinetics of the hardening phase in two 6061 aluminium alloys, Mater. Lett. 64 (2010) 353-356.
DOI: 10.1016/j.matlet.2009.11.014
Google Scholar
[32]
F. Sahnoune, D. Redaoui and M. Fatmi, Kinetic parameters of Al–Si spinel crystallization from Algerian tamazarte kaolin, High Temp High Press. 46 (2017) 497-508.
Google Scholar
[33]
M. Fatmi, A. Djemli, A. Ouali, T. Chihia, M.A. Ghebouli, H. Belhouchet, Heat treatment and kinetics of precipitation of β-Mg17Al12 phase in AZ91 alloy, Results Phys. 10 (2018) 693-698.
DOI: 10.1016/j.rinp.2018.07.009
Google Scholar
[34]
A. Gaber, M.A. Gaffar, M.S. Mostafa, E.F. Abo Zeid, Precipitation kinetics of Al–1.12 Mg2Si–0.35 Si and Al–1.07 Mg2Si–0.33 Cu alloys, J. Alloys Compd. 429 (2007) 167-175.
DOI: 10.1016/j.jallcom.2006.04.021
Google Scholar
[35]
A. Khalfallah, A. A. Raho, S. Amzert, A. Djemli, Precipitation kinetics of GP zones, metastable η' phase and equilibrium η phase in Al−5.46wt. %Zn−1.67wt.%Mg alloy, Trans. Nonferrous Met. Soc. China. 29 (2019) 233-241.
DOI: 10.1016/s1003-6326(19)64932-0
Google Scholar
[36]
E. F. Abo Zeid and A. Gaber, Investigation of nanoscale precipitates developed in Al–0.73Mg–0.45Si–0.34Cu–0.21Cr–0.20Fe alloy, Mater. Sci. Technol. 27 (2011) 487-493.
DOI: 10.1179/174328409x422022
Google Scholar
[37]
M. Romero, J. Martín-Márquez, J.Ma. Rincón, Kinetic of mullite formation from a porcelain stoneware body for tiles production. J Eur Ceram Soc. 26 (2006) 1647-1652.
DOI: 10.1016/j.jeurceramsoc.2005.03.235
Google Scholar
[38]
D. Redaoui, F. Sahnoune, M. Heraiz, H. Belhouchet, M. Fatmi, Thermal decomposition kinetics of Algerian Tamazarte kaolinite by thermogravimetric analysis, Trans. Nonferrous Met. Soc. China. 27 (2017) 1849-1855.
DOI: 10.1016/s1003-6326(17)60208-5
Google Scholar
[39]
A. Gaber, K. Matsuda, A.M. Ali, Y. Zou, S. Ikeno, DSC and HRTEM investigation of the precipitates in Al–1.0%Mg 2 Si–0.5%Ag alloy, Mater. Sci. Technol. 20 (2004)1627-1631.
DOI: 10.1179/026708304x6086
Google Scholar
[40]
J.H. Kim, C. Daniel Marioara, R. Holmestad, E. Kobayashi, T. Sato, Effects of Cu and Ag additions on age-hardening behavior during multi-step aging in Al-Mg-Si alloys, Mater. Sci. Eng. A 560 (2013) 154-162.
DOI: 10.1016/j.msea.2012.09.051
Google Scholar
[41]
M.J. Straink, Analysis of aluminum based alloys by calorimetry:Quantitative analysis of reactions and reaction kinetics, Int Mater Rev. 49 (2004) 191-226.
Google Scholar