[1]
O. Badran, H. Sarhan, B. Alomour, Thermal performance analysis of induction motor, International Journal of Heat and Technology, 30(1) (2012) 75-88
Google Scholar
[2]
Y. Zhu, M. Xiao, K. Lu, Z. Wu, and B. Tao, A Simplified Thermal Model and Online Temperature Estimation Method of Permanent Magnet Synchronous Motors, Applied Science, 9(15) (2019) 1-18
DOI: 10.3390/app9153158
Google Scholar
[3]
P. Cabral, A. Adouni, Induction Motor Thermal Analysis Based on Lumped Parameter Thermal Network, International Congress on Engineering — Engineering for Evolution, (2020) 451–464, 2020
DOI: 10.18502/keg.v5i6.7061
Google Scholar
[4]
P. S. Ghahfarokhi, A. Podgornovs, A. J. M. Cardoso, A. Kallaste, A. Belahcen, T. Vaimann, Thermal Modeling of a TEFC Synchronous Reluctance Motor, 2021 IEEE 62nd International Scientific Conference on Power and Electrical Engineering of Riga Technical University(RTUCON), (2021)
DOI: 10.1109/RTUCON53541.2021.9711740
Google Scholar
[5]
C. Ulu, O. Korman, G. Kömürgöz, Electromagnetic and thermal analysis/design of an induction motor for electric vehicles, 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE), Prague, Czech Republic, (2017) 6-10
DOI: 10.1109/ICMAE.2017.8038607
Google Scholar
[6]
K. Rönnberg, M. E. Beniakar, Thermal Modelling of Totally Enclosed Fan Cooled motors, 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, (2018) 2619-2625
DOI: 10.1109/ICELMACH.2018.8506824
Google Scholar
[7]
R. O Grover, X. Yang, S. Parrish, L. Nocivelli, K. J. Asztalos, S. Som, Y. Li, C. Burns, J. V. Gilder, N. Attal, O. Avanessian, CFD simulations of electric motor end ring cooling for improved thermal management, Science and Technology for Energy Transition, 77 (2022)
DOI: 10.2516/stet/2022015
Google Scholar
[8]
C. Srinivasan, X. Yang, J. Schlautman, D. Wang, S. Gangaraj, Conjugate heat transfer CFD analysis of an oil cooled automotive electrical motor, SAE International Journal of Advanced and Current Practices in Mobility 2(4) (2020)
DOI: 10.4271/2020-01-0168
Google Scholar
[9]
X. Ding, M. Bhattacharya, M. Chris, Simplified Thermal Model of PM Motors in Hybrid Vehicle Applications Taking into Account Eddy Current Loss in Magnets, Journal of Asian Electric Vehicles, 8(1) (2010) 1337-1334
DOI: 10.4130/jaev.8.1337
Google Scholar
[10]
A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller, C. Mejuto, Evolution and Modern Approaches for Thermal Analysis of Electrical Machines, IEEE Transactions on Industrial Electronics, 56(3) (2009) 871-882
DOI: 10.1109/TIE.2008.2011622
Google Scholar
[11]
H. Wei, X. Wang, L. Xiong, X. Zhang, Temperature rise calculation of synchronous reluctance motors based on the LPTN, 2023 IEEE 6th International Electrical and Energy Conference (CIEEC), Hefei, China, (2023). 856-861
DOI: 10.1109/CIEEC58067.2023.10167408
Google Scholar
[12]
Y. Liu, Z. Zhang, C. Wang, W. Geng, T. Yang, Design and analysis of oil-immersed cooling stator with nonoverlapping concentrated winding for high-power ironless stator axial-flux permanent magnet machines, IEEE Trans. Ind. Electron, 68(4) (2020) 2876–2886
DOI: 10.1109/TIE.2020.2978694
Google Scholar
[13]
Z. Pei, J. Zhao, J. Song, K. Zong, Z. He, Y. Zhou, Temperature field calculation and water-cooling structure design of coreless permanent magnet synchronous linear motor. IEEE Trans. Ind. Electron, 68(2) (2020) 1065–1076
DOI: 10.1109/TIE.2020.2967707
Google Scholar
[14]
C- T. Amitav, J. David, K. Nitish, J. Yogendra, K. Satish, Comparison of electro-thermal performance of advanced cooling techniques for electric vehicle motors, 183(2) (2021) 116182
DOI: 10.1016/j.applthermaleng.2020.116182
Google Scholar
[15]
F. A. Khalifa, S. Serry, M. M. Ismail, B. Elhady, Effect of temperature rise on the performance of induction motors, 2009 International Conference on Computer Engineering & Systems, Cairo, Egypt, (2009) 549-552
DOI: 10.1109/ICCES.2009.5383074
Google Scholar
[16]
M. J. Duran, J. M. Iraizoz Fernández, Lumped-Parameter Thermal Model for Induction Machines, IEEE Trans. Energy Convers, 19(4) (2005) 791–792
DOI: 10.1109/TEC.2004.837272
Google Scholar
[17]
J. Fan, C. Zhang, Z. Wang, Y. Dong, C. E. Nino, A. Rehman, E. Strangas, Thermal Analysis of Permanent Magnet Motor for the Electric Vehicle Application Considering Driving Duty Cycle, IEEE Transactions on Magnetics, 46(6) (2010) 2493-2496
DOI: 10.1109/TMAG.2010.2042043
Google Scholar
[18]
R. Ibtiouen, S. Mezani, O. Touhami, N. Nouali, M. Benhaddadi, Application of lumped parameters and finite element methods to the thermal modeling of an induction motor, IEEE International Electric Machines and Drives Conference (Cat. No.01EX485), Cambridge, MA, USA, (2001) 505-507
DOI: 10.1109/IEMDC.2001.939354
Google Scholar
[19]
C. Wang, L. Huang, S. Hao, D. Li, Y. Cheng, N. Lu, X. Fan, X. Zeng, Cooling design and thermal analysis of flooded high power density machines with multi cooling channels, 2023 26th International Conference on Electrical Machines and Systems (ICEMS), Zhuhai, China, (2023) 3215-3220
DOI: 10.1109/ICEMS59686.2023.10344524
Google Scholar
[20]
C. Iacovano, F. Berni, G. Cicalese, S. Nuzzo, S. Fontanesi, An integrated 2D/3D numerical methodology to predict the thermal field of electric motors, Case Studies in Thermal Engineering, 56 (2024) 104233
DOI: 10.1016/j.csite.2024.104233
Google Scholar
[21]
P. Ragot, M. Markovic, Y. Perriard, Optimization of Electric Motor for a Solar Airplane Application, IEEE International Conference on Electric Machines and Drives, 2005., San Antonio, TX, USA, (2005) 1487-1493
DOI: 10.1109/IEMDC.2005.195917
Google Scholar
[22]
T. Tea, K. Peter, P. Gregor, F. Bogdan, S. Jurij, A comparative study of stochastic optimization methods in electric motor design, Applied Intelligence, 27(2) (2007) 101-111
DOI: 10.1007/s10489-006-0022-2
Google Scholar
[23]
P. Gangl, U. Langer, A. Laurain, H. Meftahi K. Sturm, Shape Optimization of an Electric Motor Subject to Nonlinear Magnetostatics, SIAM Journal on Scientific Computing, 37(6) (2015) B1002-B1025
DOI: 10.1137/15100477x
Google Scholar
[24]
N. Chen, S. L. Ho, W. N. Fu, Optimization of Permanent Magnet Surface Shapes of Electric Motors for Minimization of Cogging Torque Using FEM, IEEE Transactions on Magnetics, 46(6) (2010) 2478-2481
DOI: 10.1109/TMAG.2010.2044764
Google Scholar
[25]
M. Cavazzuti, G. Gaspari, S. Pasquale, E. Stalio, Thermal management of a Formula E electric motor: Analysis and optimization, Applied Thermal Engineering, 157 (2019) 113733
DOI: 10.1016/j.applthermaleng.2019.113733
Google Scholar
[26]
G. I. Taylor, Distribution of velocity and temperature between concentric cylinders, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 151 (1935), 494-512
DOI: 10.1098/rspa.1935.0163
Google Scholar
[27]
S. Yanhua and J. Chun, "Thermal Behavior of PM in-wheel Motor used in Off-road Motor Driven Truck", Procedia Engineering, 23 (2011) 222 – 228
DOI: 10.1016/j.proeng.2011.11.2493
Google Scholar
[28]
A. I. Khuri, S. Mukhopadhyay, Response surface methodology, Wiley Interdiscip. Rev.Comput. Stat., 2(2) (2010) 128-149
DOI: 10.1002/wics.73
Google Scholar
[29]
A. H. Pordanjani., S. M., S. Aghakhani, M.Afrand, H. F.Oztop, N. Abu-Hamdeh, Effect of magnetic field on mixed convection and entropy generation of hybrid nanofluid in an inclined enclosure: Sensitivity analysis and optimization, The European Physical Journal Plus,134(8) (2019) 412
DOI: 10.1140/epjp/i2019-12763-2
Google Scholar
[30]
A. H. Pordanjani, S. M. Vahedi, F.Rikhtegar, S. Wongwises,Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology, Journal of Thermal Analysis and Calorimetry,135(2) (2019) 1031-1045
DOI: 10.1007/s10973-018-7652-6
Google Scholar
[31]
S. M. Vahedi, A. H. A. H. Pordanjani, A.Raisi, A. J. Chamkha, Sensitivity analysis and optimization of MHD forced convection of a Cu-water nanofluid flow past a wedge, The European Physical Journal Plus, 134(3) (2019) 124.
DOI: 10.1140/epjp/i2019-12537-x
Google Scholar