Thermal Performance and Sensitivity Analysis of Permanent Magnet Motor: Theoretical Investigation and Optimization

Article Preview

Abstract:

The thermal model of a permanent magnet motor (PMM) is investigated in this study using the lumped parameter thermal approach to calculate temperature variation at steady-state and transient conditions. The temperature variation of the motor components over time under various loads is investigated. The proposed thermal model was constructed with the MATLAB code. The thermal characteristics of the motor are examined using the simulation results. The optimization and sensitivity analysis are done using the response surface method (RSM) by design expert software. It can be seen that increasing the load and time increases the temperature of all parts in the machine. Also, point multiplication with 0.998 desirability is presented, which has the best efficiency with the lowest temperature.

You might also be interested in these eBooks

Info:

Pages:

13-33

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Badran, H. Sarhan, B. Alomour, Thermal performance analysis of induction motor, International Journal of Heat and Technology, 30(1) (2012) 75-88

Google Scholar

[2] Y. Zhu, M. Xiao, K. Lu, Z. Wu, and B. Tao, A Simplified Thermal Model and Online Temperature Estimation Method of Permanent Magnet Synchronous Motors, Applied Science, 9(15) (2019) 1-18

DOI: 10.3390/app9153158

Google Scholar

[3] P. Cabral, A. Adouni, Induction Motor Thermal Analysis Based on Lumped Parameter Thermal Network, International Congress on Engineering — Engineering for Evolution, (2020) 451–464, 2020

DOI: 10.18502/keg.v5i6.7061

Google Scholar

[4] P. S. Ghahfarokhi, A. Podgornovs, A. J. M. Cardoso, A. Kallaste, A. Belahcen, T. Vaimann, Thermal Modeling of a TEFC Synchronous Reluctance Motor, 2021 IEEE 62nd International Scientific Conference on Power and Electrical Engineering of Riga Technical University(RTUCON), (2021)

DOI: 10.1109/RTUCON53541.2021.9711740

Google Scholar

[5] C. Ulu, O. Korman, G. Kömürgöz, Electromagnetic and thermal analysis/design of an induction motor for electric vehicles, 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE), Prague, Czech Republic, (2017) 6-10

DOI: 10.1109/ICMAE.2017.8038607

Google Scholar

[6] K. Rönnberg, M. E. Beniakar, Thermal Modelling of Totally Enclosed Fan Cooled motors, 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, (2018) 2619-2625

DOI: 10.1109/ICELMACH.2018.8506824

Google Scholar

[7] R. O Grover, X. Yang, S. Parrish, L. Nocivelli, K. J. Asztalos, S. Som, Y. Li, C. Burns, J. V. Gilder, N. Attal, O. Avanessian, CFD simulations of electric motor end ring cooling for improved thermal management, Science and Technology for Energy Transition, 77 (2022)

DOI: 10.2516/stet/2022015

Google Scholar

[8] C. Srinivasan, X. Yang, J. Schlautman, D. Wang, S. Gangaraj, Conjugate heat transfer CFD analysis of an oil cooled automotive electrical motor, SAE International Journal of Advanced and Current Practices in Mobility 2(4) (2020)

DOI: 10.4271/2020-01-0168

Google Scholar

[9] X. Ding, M. Bhattacharya, M. Chris, Simplified Thermal Model of PM Motors in Hybrid Vehicle Applications Taking into Account Eddy Current Loss in Magnets, Journal of Asian Electric Vehicles, 8(1) (2010) 1337-1334

DOI: 10.4130/jaev.8.1337

Google Scholar

[10] A. Boglietti, A. Cavagnino, D. Staton, M. Shanel, M. Mueller, C. Mejuto, Evolution and Modern Approaches for Thermal Analysis of Electrical Machines, IEEE Transactions on Industrial Electronics, 56(3) (2009) 871-882

DOI: 10.1109/TIE.2008.2011622

Google Scholar

[11] H. Wei, X. Wang, L. Xiong, X. Zhang, Temperature rise calculation of synchronous reluctance motors based on the LPTN, 2023 IEEE 6th International Electrical and Energy Conference (CIEEC), Hefei, China, (2023). 856-861

DOI: 10.1109/CIEEC58067.2023.10167408

Google Scholar

[12] Y. Liu, Z. Zhang, C. Wang, W. Geng, T. Yang, Design and analysis of oil-immersed cooling stator with nonoverlapping concentrated winding for high-power ironless stator axial-flux permanent magnet machines, IEEE Trans. Ind. Electron, 68(4) (2020) 2876–2886

DOI: 10.1109/TIE.2020.2978694

Google Scholar

[13] Z. Pei, J. Zhao, J. Song, K. Zong, Z. He, Y. Zhou, Temperature field calculation and water-cooling structure design of coreless permanent magnet synchronous linear motor. IEEE Trans. Ind. Electron, 68(2) (2020) 1065–1076

DOI: 10.1109/TIE.2020.2967707

Google Scholar

[14] C- T. Amitav, J. David, K. Nitish, J. Yogendra, K. Satish, Comparison of electro-thermal performance of advanced cooling techniques for electric vehicle motors, 183(2) (2021) 116182

DOI: 10.1016/j.applthermaleng.2020.116182

Google Scholar

[15] F. A. Khalifa, S. Serry, M. M. Ismail, B. Elhady, Effect of temperature rise on the performance of induction motors, 2009 International Conference on Computer Engineering & Systems, Cairo, Egypt, (2009) 549-552

DOI: 10.1109/ICCES.2009.5383074

Google Scholar

[16] M. J. Duran, J. M. Iraizoz Fernández, Lumped-Parameter Thermal Model for Induction Machines, IEEE Trans. Energy Convers, 19(4) (2005) 791–792

DOI: 10.1109/TEC.2004.837272

Google Scholar

[17] J. Fan, C. Zhang, Z. Wang, Y. Dong, C. E. Nino, A. Rehman, E. Strangas, Thermal Analysis of Permanent Magnet Motor for the Electric Vehicle Application Considering Driving Duty Cycle, IEEE Transactions on Magnetics, 46(6) (2010) 2493-2496

DOI: 10.1109/TMAG.2010.2042043

Google Scholar

[18] R. Ibtiouen, S. Mezani, O. Touhami, N. Nouali, M. Benhaddadi, Application of lumped parameters and finite element methods to the thermal modeling of an induction motor, IEEE International Electric Machines and Drives Conference (Cat. No.01EX485), Cambridge, MA, USA, (2001) 505-507

DOI: 10.1109/IEMDC.2001.939354

Google Scholar

[19] C. Wang, L. Huang, S. Hao, D. Li, Y. Cheng, N. Lu, X. Fan, X. Zeng, Cooling design and thermal analysis of flooded high power density machines with multi cooling channels, 2023 26th International Conference on Electrical Machines and Systems (ICEMS), Zhuhai, China, (2023) 3215-3220

DOI: 10.1109/ICEMS59686.2023.10344524

Google Scholar

[20] C. Iacovano, F. Berni, G. Cicalese, S. Nuzzo, S. Fontanesi, An integrated 2D/3D numerical methodology to predict the thermal field of electric motors, Case Studies in Thermal Engineering, 56 (2024) 104233

DOI: 10.1016/j.csite.2024.104233

Google Scholar

[21] P. Ragot, M. Markovic, Y. Perriard, Optimization of Electric Motor for a Solar Airplane Application, IEEE International Conference on Electric Machines and Drives, 2005., San Antonio, TX, USA, (2005) 1487-1493

DOI: 10.1109/IEMDC.2005.195917

Google Scholar

[22] T. Tea, K. Peter, P. Gregor, F. Bogdan, S. Jurij, A comparative study of stochastic optimization methods in electric motor design, Applied Intelligence, 27(2) (2007) 101-111

DOI: 10.1007/s10489-006-0022-2

Google Scholar

[23] P. Gangl, U. Langer, A. Laurain, H. Meftahi K. Sturm, Shape Optimization of an Electric Motor Subject to Nonlinear Magnetostatics, SIAM Journal on Scientific Computing, 37(6) (2015) B1002-B1025

DOI: 10.1137/15100477x

Google Scholar

[24] N. Chen, S. L. Ho, W. N. Fu, Optimization of Permanent Magnet Surface Shapes of Electric Motors for Minimization of Cogging Torque Using FEM, IEEE Transactions on Magnetics, 46(6) (2010) 2478-2481

DOI: 10.1109/TMAG.2010.2044764

Google Scholar

[25] M. Cavazzuti, G. Gaspari, S. Pasquale, E. Stalio, Thermal management of a Formula E electric motor: Analysis and optimization, Applied Thermal Engineering, 157 (2019) 113733

DOI: 10.1016/j.applthermaleng.2019.113733

Google Scholar

[26] G. I. Taylor, Distribution of velocity and temperature between concentric cylinders, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 151 (1935), 494-512

DOI: 10.1098/rspa.1935.0163

Google Scholar

[27] S. Yanhua and J. Chun, "Thermal Behavior of PM in-wheel Motor used in Off-road Motor Driven Truck", Procedia Engineering, 23 (2011) 222 – 228

DOI: 10.1016/j.proeng.2011.11.2493

Google Scholar

[28] A. I. Khuri, S. Mukhopadhyay, Response surface methodology, Wiley Interdiscip. Rev.Comput. Stat., 2(2) (2010) 128-149

DOI: 10.1002/wics.73

Google Scholar

[29] A. H. Pordanjani., S. M., S. Aghakhani, M.Afrand, H. F.Oztop, N. Abu-Hamdeh, Effect of magnetic field on mixed convection and entropy generation of hybrid nanofluid in an inclined enclosure: Sensitivity analysis and optimization, The European Physical Journal Plus,134(8) (2019) 412

DOI: 10.1140/epjp/i2019-12763-2

Google Scholar

[30] A. H. Pordanjani, S. M. Vahedi, F.Rikhtegar, S. Wongwises,Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology, Journal of Thermal Analysis and Calorimetry,135(2) (2019) 1031-1045

DOI: 10.1007/s10973-018-7652-6

Google Scholar

[31] S. M. Vahedi, A. H. A. H. Pordanjani, A.Raisi, A. J. Chamkha, Sensitivity analysis and optimization of MHD forced convection of a Cu-water nanofluid flow past a wedge, The European Physical Journal Plus, 134(3) (2019) 124.

DOI: 10.1140/epjp/i2019-12537-x

Google Scholar