[1]
D. Onwuka, N. Osadebe, C. Okere, Structural characteristics of sandcrete blocks produced in southeast Nigeria, J. Innovat. Res. Eng. Sci. 4(3) (2013) 483-490.
Google Scholar
[2]
S.O. Odeyemi, M.A. Anifowose, S.A. Bello, Z.T. GIWA, U.N. Wilson, Strength properties and microstructure of sandcrete blocks incorporated with maize straws, Advan. Eng. Forum, 46 (2022) 71-78.
DOI: 10.4028/p-kgoezq
Google Scholar
[3]
NIS 87, Specification for standard sandcrete blocks, Nigerian Industrial Standard, Standard Organization of Nigeria, Lagos, Nigeria, (2000).
Google Scholar
[4]
A.A. Raheem, Comparism of the quality of sandcrete blocks produced by LAUTECH block industry with others within Ogbomoso Township, Sci. Focus, 11(1) (2006) 103-108.
Google Scholar
[5]
M. Anosike, A. Oyebande, Sandcrete blocks and quality management in Nigeria building industry, J. Eng. Proj. Prod. Manag. 2(1) (2012) 37-46.
DOI: 10.32738/jeppm.201201.0005
Google Scholar
[6]
A.A. Raheem, O.K. Sulaiman, Saw dust ash as partial replacement for cement in the production of sandcrete hollow blocks, Int. J. Eng. Res. Applicat. 3(4) (2013) 713-721.
Google Scholar
[7]
D.E. Ewa, J.O. Ukpata, Investigation of the compressive strengths of commercial sandcrete blocks in Calabar Nigeria, Int. J. Eng. Tech. 3(4) (2013) 477–482.
Google Scholar
[8]
S.O. Odeyemi, R. Abdulwahab, M.A. Anifowose, R.J. Ibrahim, Impact of different fine aggregates on the compressive strength of sandcrete blocks, Arid Zone J. Eng. Tech. Env. 15(3) (2019) 611-618.
Google Scholar
[9]
E.B. Oyetola, M. Abdullahi, The use of rice husk ash in low-cost sandcrete block production, Leonardo Electro. J. Pract. Tech. 8 (2006) 58-70.
Google Scholar
[10]
G. Oyekan, O.M. Kamiyo, A study on the engineering properties of sandcrete blocks produced with rice husk ash blended cement, J. Eng. Tech. Res. 3(3) (2011) 88-98.
Google Scholar
[11]
T.O. Adewuyi, K.O. Olusola, M.G. Oladokun, Engineering properties of sandcrete blocks made with blended Bamboo Leaf Ash (BLA) and ordinary portland cement, A Multidi. J. Grad. Sch. Uni. of Uyo, Nigeria, 1(3) (2013) 48-59.
Google Scholar
[12]
A.A. Raheem, S.I. Adedokun, Q.A. Uthman, A.O. Adeyemi, O.M. Oyeniyi, Application of corn husk ash as partial replacement for cement in the production of interlocking paving stones, LAUTECH J. Civil Environ. Stud. 1(1) (2018) 14-20.
DOI: 10.36108/laujoces/8102/10(0130)
Google Scholar
[13]
A. Edalat-Behbahani, F. Soltanzazeh, M. Emam-Jomeh, Z. Soltanzadeh, Sustainable approaches for developing concrete and mortar using waste seashell, European J. Envir. Civil Eng. 25(10) (2021) 1874-1893.
DOI: 10.1080/19648189.2019.1607780
Google Scholar
[14]
J.M. Carvalho, T.V. Melo, W.C. Fontes, J.O. Batista, G.J. Brigolini, R.A. Peixoto, More Eco-efficient concrete: an approach on optimization in the production and use of waste-based supplementary cementing materials, Const. Build. Mat. 206 (2019) 397-409.
DOI: 10.1016/j.conbuildmat.2019.02.054
Google Scholar
[15]
C.C. Ikeagwuani, D.C. Nwonu, C.K. Ugwu, C.C. Agu, Process parameters optimization for eco-friendly high strength sandcrete block using taguchi method, Heliyon 6 (2020) e04276.
DOI: 10.1016/j.heliyon.2020.e04276
Google Scholar
[16]
A.A. Raheem, M.A. Kareem, Optimal raw material mix for the production of rice husk ash blended cement, Int. J. Sust. Const. Eng. Tech. 7(2) (2017) 77-93.
Google Scholar
[17]
A.A. Raheem, M.A. Kareem, Chemical composition and physical characteristics of rice husk ash blended cement, Int. J. Eng. Res. Africa, 32 (2017) 25-35.
DOI: 10.4028/www.scientific.net/jera.32.25
Google Scholar
[18]
J.A. Ige, M.A. Anifowose, S.O. Odeyemi, S.A. Adebara, M.O. Oyeleke, Assessment of rice husk ash (RHA) and calcium chloride (CaCl2) on compressive strength of concrete grade 20, Int. J. Eng. Res. Africa, 40 (2018) 22-29.
DOI: 10.4028/www.scientific.net/jera.40.22
Google Scholar
[19]
M.A. Anifowose, J.A. Ige, A.L. Yusuf, S.A. Adebara, A.A. Abdulkarim, Physio-chemical assessment of rice husk ash (RHA) blended calcium chloride (CaCl2) as supplementary cementing materials, ANNALS of Fac. Eng. Hunedoara-Int. J. Eng. 16(4) (2018) 111-114.
Google Scholar
[20]
J.A. Ige, M.A. Anifowose, M.O. Oyeleke, S.B. Bakare, T.F. Akinjobi, Physio-chemical assessment of groundnut shell ash (GSA) blended calcium chloride (CaCl2) as supplementary cementing material, ACTA TECHNICA CORVINIENSIS–Bull. Eng. J. 10(3) (2017) 155-158.
Google Scholar
[21]
J.A. Ige, M.A. Anifowose, I.O. Amototo, A.O. Adeyemi, M.Y. Olawuyi, Influence of groundnut shell ash (GSA) and calcium chloride (CaCl2) on strength of concrete, ANNALS of Fac. Eng. Hunedoara-Int. J. Eng. 15(4) (2017) 209-214.
Google Scholar
[22]
E.E. Ndububa, Y. Nurudeen, Effect of guinea corn husk ash as partial replacement for cement in concrete, IOSR J. Mech. Civil Eng. 12(2) (2015) 40-45.
Google Scholar
[23]
V.B. Adebayo, T.D. Adebayo, O.O. Popoola, Effects of guinea corn husk ash and lime mixtures on lateritic soil for highway construction, J. Multidi. Eng. Sci. Tech. 4(10) (2017) 8375-8381.
Google Scholar
[24]
S.O. Odeyemi, M.A. Anifowose, R. Abdulwahab, W.O. Oduoye, Mechanical properties of high-performance concrete with guinea corn husk ash as additives, LAUTECH J. Civil Environ. Stud. 5(1) (2020) 139-154.
DOI: 10.36108/laujoces/0202/50(0131)
Google Scholar
[25]
N. Dave, A.K. Misra, A. Srivastava, S.K. Kaushik, Setting time and standard consistency of quaternary binders: the influence of cementitious material addition and mixing, Int. J. Sust. Built Envir. 6 (2017) 30-36.
DOI: 10.1016/j.ijsbe.2016.10.004
Google Scholar
[26]
M. Rajaram, A. Ravichandran, A. Muthadhi, Studies on optimum usage of ggbs in concrete, Int. J. Innovat. Sci. Res. Tech. 2(5) (2017) 773-778.
Google Scholar
[27]
A. Cleetus, R. Shibu, P.M. Sreehari, V.K. Paul, B. Jacob, Analysis and study of the effect of ggbfs on concrete structures, Int. Res. J. Eng. Tech. 5(3) (2018) 3033-3037.
Google Scholar
[28]
A.A. Raheem, R. Abdulwahab, M.A. Kareem, Characterization and effects of nanosilica on consistency and setting times of metakaolin blended cement mortar, Nano Plus: Sci. Tech. Nanomat. 2 (2021) 66-75.
DOI: 10.1016/j.jclepro.2021.125852
Google Scholar
[29]
A.A. Raheem, O.A. Olowu, A.A. Hungbo, E.O. Ibiwoye, Effects of water cement ratio on strengths characteristics of concrete produced with recycled iron and steel slag (riss) aggregate, Advan. Sci. Tech. 107 (2021) 97-112.
DOI: 10.4028/www.scientific.net/ast.107.97
Google Scholar
[30]
M. Besma Fahad, A. Mais Abdulkarem, T. Huda Hamed, A review on wastes as sustainable construction materials, IOP Conf. Series: Earth Environ. Sci. 779 (2021) 012014.
DOI: 10.1088/1755-1315/779/1/012014
Google Scholar
[31]
H. Zabihi, F. Habib, L. Mirsaeedie, Sustainability in building and construction: revising definitions and concepts, Int. J. Emerg. Sci. 2(4) (2012) 570-578.
Google Scholar
[32]
M. Amran, R. Fediuk, G. Murali, N. Vatin, M. Karelina, T. Ozbakkaloglu, R.S. Krishna, A.K. Sahoo, S.K. Das, J. Mishra, Rice husk ash-based concrete composites: a critical review of their properties and applications, Cryst. 11 (2021) 168.
DOI: 10.3390/cryst11020168
Google Scholar
[33]
O.L. Ettu, Strength of ternary blended cement sandcrete containing afikpo rice husk ash and saw dust ash, American J. Eng. Res. 2(4) (2013) 133-137.
DOI: 10.9790/3021-03444751
Google Scholar
[34]
S.N. Raman, T. Ngo, P. Mendis, H.B. Mahmud, High-strength rice husk ash concrete incorporating quarry dust as a partial substitute for sand, Const. Build. Mat. 25(7) (2011) 3123-3130.
DOI: 10.1016/j.conbuildmat.2010.12.026
Google Scholar
[35]
C. Marthong, Effect of rice husk ash (rha) as partial replacement of cement on concrete properties, Int. J. Eng. Res. Tech. 1(6) (2012) 1-8.
Google Scholar
[36]
M.R. Karim, M.F.M. Zain, M. Jamil, F.C. Lai, Fabrication of a non-cement composite binder by using slag, palm oil fuel ash and rice husk ash with sodium hydroxide as an activator, Const. Build. Mat. 49(12) (2013) 894-902.
DOI: 10.1016/j.conbuildmat.2013.08.077
Google Scholar
[37]
G. Sua-iam, N. Makul, Use of unprocessed rice husk ash and pulverized fuel ash in the production of self-compacting concrete, IERI Procedia 5 (2013) 298–303.
DOI: 10.1016/j.ieri.2013.11.107
Google Scholar
[38]
C. Fapohunda, B. Akinbile, A. Shittu, Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary portland cement–a review, Int. J. Sust. Built Env. 6 (2017) 675-692.
DOI: 10.1016/j.ijsbe.2017.07.004
Google Scholar
[39]
B. Chatveera, P. Lertwattanaruk, Evaluation of sulfate resistance of cement mortars containing black rice husk ash, J. Envir. Manag. 90(3) (2009) 1435–1441.
DOI: 10.1016/j.jenvman.2008.09.001
Google Scholar
[40]
S. Rukzon, P. Chindaprasirt, An experimental investigation of the carbonation of blended portland cement palm oil fuel ash mortar in an indoor environment, Indoor Built Environ. 18(4) (2009) 313-318.
DOI: 10.1177/1420326x09336554
Google Scholar
[41]
B. Singh, Rice husk ash, waste and supplementary cementitious materials in concrete, Elsevier (2018) 417-460.
DOI: 10.1016/b978-0-08-102156-9.00013-4
Google Scholar
[42]
S.K. Antiohos, V.G. Papadakis, S. Tsimas, Rice husk ash (RHA) effectiveness in cement and concrete as a function of reactive silica and fineness, Cem. Conc. Res. 61–62 (2014) 20-27.
DOI: 10.1016/j.cemconres.2014.04.001
Google Scholar
[43]
ASTM C 618, Specifications for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, American Society for Testing and Materials (ASTM International), West Conshohocken, United States, (2019).
DOI: 10.1520/c0618-00
Google Scholar
[44]
R. Siddique, Waste materials and by-products in concrete, Springer: Berlin, Germany, (2008).
Google Scholar
[45]
O. Olawale, F.A. Oyawale, Characterization of rice husk via atomic absorption spectrophotometer for optimal silica production, Int. J. Sci. Tech. 2(4) (2012) 210-213.
Google Scholar
[46]
M.E. Ephraim, G.A. Akeke, J.O. Ukpata, Compressive strength of concrete with rice husk ash as partial replacement of ordinary Portland cement, Schol. J. Eng. Res. 1(2) (2012) 32-36.
Google Scholar
[47]
W.N. Akhionbare, A comparative evaluation of the application of agrowaste as construction material, Int. J. Sci. Nat. 4(1) (2013) 141-144.
Google Scholar
[48]
T.Y. Tsado, M. Yewa, S. Yaman, F. Yewa, Comparative analysis of properties of some artificial pozzolana in concrete, Int. J. Eng. Tech. 4(5) (2014) 251-255.
Google Scholar
[49]
A.M. Usman, A. Raji, N.H. Waziri, Characterization of girei rice husk ash for silica potential, IOSR J. Environ. Sci. Toxicol. Food Tech. 8(1) (2014) 68-71.
DOI: 10.9790/2402-08156871
Google Scholar
[50]
K. Boontawee, W. Pansuk, L. Tachai, K. Kondoh, Effect of rice husk ash silica as cement replacement for making construction mortar, Key Eng. Mat. 775 (2018) 624-629.
DOI: 10.4028/www.scientific.net/kem.775.624
Google Scholar
[51]
M.E. Rahman, A.S. Muntohar, V. Pakrashi, B.H. Nagaratnam, D. Sujan, Self-compacting concrete from uncontrolled burning of rice husk and blended fine aggregate, Mat. Desi. 55 (2014) 410-415.
DOI: 10.1016/j.matdes.2013.10.007
Google Scholar
[52]
A. Kumar, S. Singha, D. Dasgupta, S. Datta, T. Mandal, Simultaneous recovery of silica and treatment of rice mill wastewater using rice husk ash: an economic approach, Ecolog. Eng. 84 (2015) 29-37.
DOI: 10.1016/j.ecoleng.2015.07.010
Google Scholar
[53]
W. Khan, M. Fahim, S. Zaman, S.W. Khan, Y.I. Badrashi, Y. Khan, Use of rice husk ash as partial replacement of cement in sandcrete blocks, Adv. Sci. Tech. Res. J. 15(2) (2021) 101–107.
DOI: 10.12913/22998624/133470
Google Scholar
[54]
G. Ogwang, P.W. Olupot, H. Kasedde, E. Menya, H. Storz, Y. Kiros, Experimental evaluation of rice husk ash for applications in geopolymer mortars, J. Bioresour. Bioprod. 6 (2021) 160-167.
DOI: 10.1016/j.jobab.2021.02.008
Google Scholar
[55]
D.O. Nduka, B.J. Olawuyi, E.O. Fagbenle, B.G. Fonteboa, Mechanical and microstructural properties of high-performance concrete made with rice husk ash internally cured with superabsorbent polymers, Heliyon 8 (2022) e10502.
DOI: 10.1016/j.heliyon.2022.e10502
Google Scholar
[56]
I.H. Wagan, A.H. Memon, N.A. Memon, F.T. Memon, M.H. Lashari, Rice Husk Ash (RHA) based concrete: workability and compressive strength with different dosages and curing ages, J. Appli. Eng. Sci. 12(25) (2022) 113-120.
DOI: 10.2478/jaes-2022-0016
Google Scholar
[57]
K.O. Oriola, A.A. Raheem, M.A. Kareem, R. Abdulwahab, Assessment of workability and compressive strength of rice husk ash-blended palm kernel shell concrete, LAUTECH J. Civil Environ. Stud. 7(1) (2021) 100-115.
DOI: 10.36108/laujoces/1202.70.0101
Google Scholar
[58]
U. Jamilu, M. Usman, I. A. Getso, G. Sanusi, Evaluation of compressive strength of metakaolin-rice husk ash- ternary blended mortar using surface response methodology, Mat. Tod. Proceed. 86 (2023) 73-76.
DOI: 10.1016/j.matpr.2023.03.120
Google Scholar
[59]
T.A. Sulaiman, S.P. Ejeh, A. Lawan, J.M. Kaura, Strength properties assessment of sesame straw ash blended with rice husk ash as an alternative for cement in concrete, Nigerian J. Eng. 29(1) (2022) 58-63.
DOI: 10.46792/fuoyejet.v7i2.813
Google Scholar
[60]
N. Maeda, I. Wada, M. Kawakami, T. Ueda, G.K.D. Pushpalal, Development of a new furnace for the production of rice husk ash, Symposium Paper (2001) 835-852.
Google Scholar
[61]
O.O. Olubajo, I.Y. Makarfi, M.S. Ibrahim, S. Ayeni, N.W. Uche, A Study on ordinary portland cement blended with rice husk ash and metakaolin, Traektoriâ Nauki = Path of Sci. 6(1) (2020) 3001-3019.
DOI: 10.22178/pos.54-4
Google Scholar
[62]
R.P. Jaya, B.H., Abu Bakar, M.A. Megat Johari, M.H. Wan Ibrahim, Strength and permeability properties of concrete containing rice husk ash with different grinding time, Centr. European J. Eng. 1(1) (2011) 103-112.
DOI: 10.2478/s13531-010-0003-4
Google Scholar
[63]
A.A. Raheem, M.A. Anifowose, Effect of ash fineness and content on consistency and setting time of rha blended cement, Mat. Tod. Proceed. 86 (2023) 18-23.
DOI: 10.1016/j.matpr.2023.02.054
Google Scholar
[64]
H.U. Jamo, M.N. Mahraz, Influence of addition of rice husk ash on porcelain composition, Sci. World J. 10(1) (2015) 7-16.
Google Scholar
[65]
K.N. Farooque, M. Zaman, E. Halim, S. Islam, M. Hossain, Y.A. Mollah, A.J. Mahmood, Characterization and utilization of rice husk ash (rha) from rice mill of bangladesh. Bangladesh J. Scienti. Indust. Res. 44(2) (2009) 157-162.
DOI: 10.3329/bjsir.v44i2.3666
Google Scholar
[66]
T.R. Praveenkumar, M.M. Vijayalakshmi, M.S. Meddah, Strengths and durability performances of blended cement concrete with tio2 nanoparticles and rice husk ash, Const. Build. Mat. 217 (2019) 343-351.
DOI: 10.1016/j.conbuildmat.2019.05.045
Google Scholar
[67]
M.R. Karim, M.F.M. Zain, M. Jamil, F.C. Lai, M.N. Islam, Strength of mortar and concrete as influenced by rice husk ash: a review, World Appli. Sci. J. 19(10) (2012) 1501-1513.
Google Scholar
[68]
R. Kashyap, M. Chaudhary, A. Sen, Effect of partial replacement of cement by rice husk ash in concrete, Int. J. Sci. Res. 4(5) (2015) 1572-1574.
Google Scholar
[69]
M.A. Noaman, M.N. Islam, M.R. Islam, M.R. Karim, Mechanical Properties of Brick Aggregate Concrete Containing Rice Husk Ash as a Partial Replacement of Cement, J. Mat. Civil Eng. 30(6) (2018) 1-10.
DOI: 10.1061/(asce)mt.1943-5533.0002272
Google Scholar
[70]
M.A. Noaman, M.R. Karim, N.R. Islam, Comparative study of pozzolanic and filler effect of rice husk ash on the mechanical properties and microstructure of brick aggregate concrete, Heliyon 5 (2019) e01926.
DOI: 10.1016/j.heliyon.2019.e01926
Google Scholar
[71]
S. Kumar, P. Sangwan, D.R.M.V.S. Bidra, Utilization of rice husk and their ash: a review, Research J. Chem. Environ. Sci. 1(5) (2013) 126-129.
Google Scholar
[72]
Y. Zou, T. Yang, Rice husk, rice husk ash and their applications, in: rice bran rice bran oil, Chemist. Process. Utilizat. (2019) 207-246.
DOI: 10.1016/b978-0-12-812828-2.00009-3
Google Scholar
[73]
A.A. Abubakar, Progress on the use of rice husk ash (RHA) as a construction material in Nigeria, Sust. Struct. Mat. 1(2) (2018) 1-13.
Google Scholar
[74]
A.E. Abalaka, O.G. Okoli, Influence of water-binder ratio on normal strength concrete with rice husk ash, Int. J. Sci. 2 (2013) 28-36.
Google Scholar
[75]
ASTM C150, Standard Specification for Portland Cement, Annual book of American Society for Testing and Materials (ASTM International), West Conshohocken, United States Standards (Revised Edition) 4(2) (2002) 1-7.
Google Scholar
[76]
G. Mounika, R. Baskar J.S.K. Rama, Rice husk ash as a potential supplementary cementitious material in concrete solution towards sustainable construction, Innova. Infrastr. Solut. 7 (2022) 51.
DOI: 10.1007/s41062-021-00643-5
Google Scholar
[77]
NIS 978, Standard for sandcrete blocks, Nigerian Industrial Standard, Standard Organisation of Nigeria, Lagos, Nigeria, ICS 91.100.30 (2017).
Google Scholar
[78]
M. Abdullahi, Properties of some fine aggregates in Minna, Nigeria and environs, Leonardo J. Sci. 8 (2006) 1-6.
Google Scholar
[79]
G. Oyekan, Effect of granite fines on the compressive strength of sandcrete blocks, Proceedings of Conference on Construction Technology, Sabah, Malaysia, (2001) 14-17.
Google Scholar
[80]
M. Anwar, T. Miyagawa, M. Gaweesh, Using rice husk ash as a cement replacement material in concrete, Waste Manag. Ser. 1 (2000) 671-684.
DOI: 10.1016/s0713-2743(00)80077-x
Google Scholar
[81]
S. Yusuf, A.A. Hamza, Comparing the compressive strength of six and nine inches hand moulded sandcrete block, J. Eng. Appli. Sci. 3 (2011) 64-69.
Google Scholar
[82]
A.A. Raheem, A.K. Momoh, A.A. Soyingbe, Comparative analysis of sandcrete hollow blocks and laterite interlocking blocks as walling elements, Int. J. Sustain. Const. Eng. Tech. 3(1) (2012) 79-88.
Google Scholar
[83]
O.S. Olagunju, A.A. Raheem, Effects of hollow sizes on the properties of sandcrete blocks, LAUTECH J. Civil Environ. Stud. 7(2) (2021) 55-64.
Google Scholar
[84]
S.O. Odeyemi, O.O. Otunola, A.O. Adeyemi, W.O. Oyeniyan, M.Y. Olawuyi, Compressive strength of manual and machine compacted sandcrete hollow blocks produced from brands of nigerian cement, American J. Civ. Eng. 3(2-3) (2015) 6-9.
Google Scholar
[85]
U.N. Wilson, S.A. Raji, J.A. Alomaja, Comparative review on the use of sandcrete blocks and laterite-cement bricks in Nigeria, Ethiopian Int. J. Multi. Res. 3(3) (2016) 32-44.
Google Scholar
[86]
A. Usman, U. Gidado, Quality assurance of hollow sandcrete blocks produced by block moulding factories in gombe metropolis, J. Sci. Tech. Edu. 2(1) (2013) 61-65.
Google Scholar
[87]
M. Muhammed, A.R. Anwar, Assessment of structural strength of commercial sandcrete blocks in Kano State, Nigerian J. Tech. Develop. 11(2) (2014) 39-43.
Google Scholar
[88]
S.O. Odeyemi, M.A. Akinpelu, O.D. Atoyebi, K.J. Orire, Quality assessment of sandcrete block produced in Adeta, Kwara State Nigeria, Nigerian J. Tech. 37(1) (2018) 53-59.
DOI: 10.4314/njt.v37i1.7
Google Scholar
[89]
NIS 87, Specification for standard sandcrete blocks, Nigerian Industrial Standard, Standard Organization of Nigeria, Lagos, Nigeria, (2007).
Google Scholar
[90]
M. Abubakar, V.F. Omotoriogun, Quality assessment of commercial sandcrete blocks in Minna metropolis, Niger state, Nigerian J. Tech. 41(2) (2022) 222-228.
DOI: 10.4314/njt.v41i2.3
Google Scholar
[91]
I.K. Cissea, M. Laguerbea, Mechanical characterization of filler sandcretes with rice husk ash additions: study applied to Senegal, Cem. Concr. Res. 30(1) (2000) 13-18.
DOI: 10.1016/s0008-8846(99)00182-9
Google Scholar
[92]
G. Oyekan, O.M. Kamiyo, Effect of nigerian Rice Husk Ash on Some Engineering Properties of Sandcrete Blocks and Concrete, Res. J. Appl. Sci. 3(5) (2008) 345-351.
Google Scholar
[93]
U.A. Jalam, A.A. Jalam, I.M. Sale, Cost evaluation of utilising building materials derived from agricultural waste as sustainable materials for lightweight construction, Econ. Envir. Studi. 16(4) (2016) 673-685.
Google Scholar
[94]
S.P. Sangeetha, Rice husk ash sandcrete block as low cost building material, Int. J. Eng. Res. Applicat. 6(6) (2016) 46-49.
Google Scholar
[95]
O. Agbede, S.O. Obam, Compressive strength of rice husk ash-cement sandcrete blocks, Global J. Eng. Res. 7(1) (2008) 43-46.
DOI: 10.4314/gjer.v7i1.18978
Google Scholar
[96]
M.I. Aho, J.T. Utsev, Compressive strength of hollow sandcrete blocks made with rice husk ash as a partial replacement to cement, Nigerian J. Tech. 27(2) (2008) 71-77.
Google Scholar
[97]
F. Olutoge, Effect of rice husk ash in the production of hollow sandcrete block, J. Eng. Tech. 5(1) (2009) 58-63.
Google Scholar
[98]
L.O. Ettu, C.A. Ajoku, K.C. Nwachukwu, C.T.G. Awodiji, U.G. Eziefula, Strength variation of opc-rice husk ash composites with percentage rice husk ash, Int. J. Appl. Sci. Eng. Res. 2(4) (2013) 420-424.
Google Scholar
[99]
S. Mayooran, S. Ragavan, N. Sathiparan, Comparative Study on open air burnt low- and high-carbon rice husk ash as partial cement replacement in cement block production, J. Build. Eng. 13 (2017) 137-145.
DOI: 10.1016/j.jobe.2017.07.011
Google Scholar
[100]
A. Ojerinde, The use of rice husk ash (rha) as stabilizer in compressed earth block (ceb) for affordable houses, Unpublished PhD Thesis, Cardiff University, (2020).
Google Scholar
[101]
W.O. Ajagbe, A.A. Ganiyu, A.A. Adeniji, Quality assessment of sandcrete blocks in Ibadan – A review, Epistemics Sci. Eng. Techn. 3(2) (2013) 272-277.
Google Scholar