[1]
V. Kumar, K.V. Sharma, T. Caloiero, D.J. Mehta, K.Singh, Comprehensive Overview of Flood Modeling Approaches. A Review of Recent Advances, Hydrology. 10 (2023) 141.
DOI: 10.3390/hydrology10070141
Google Scholar
[2]
M.A.U.R. Tariq, R. Farooq, van de N. Giesen, A Critical Review of Flood Risk Management and the Selection of Suitable Measures, Applied Science. 10 (2020) 8752.
DOI: 10.3390/app10238752
Google Scholar
[3]
W. Lihong, C. Shenghui, L. Yuanzheng, H. Hongjie, M. Bikram, N. Vilas, F. Xuejuan, H. A. Wei, review of the flood management: from flood control to flood resilience, Heliyon, 8 (2022) 11.
Google Scholar
[4]
R.O. Salami, J.K. von Meding, H. Giggins, Vulnerability of human settlements to flood risk in the core area of Ibadan metropolis, Nigeria, Jamba. 9 (2017) 371.
DOI: 10.4102/jamba.v9i1.371
Google Scholar
[5]
J.W. Philip, C.R. Marleen, M. Johanna, S. Kai, V.L. Anne, V. Ted, U. Nina, W. Niko, A. Amir, A. Karsten, C. Lucinda, C. Maria, D. Rosie, D. Benjamin, D.B. Giuliano, S. H. Laurie, K. Heidi, M. Maurizio, S. Elisa, T. Claudia, V. Harmen, V. Anne, M.R.V. Jelle, J.W. Maarten, W. Marthe, The need to integrate flood and drought disaster risk reduction strategies, Water Security. 11 (2020) 100070.
Google Scholar
[6]
F. Miranda, A.B. Franco, O. Rezende, B.B.F. da Costa, M. Najjar, A.N. Haddad, M. A Miguez, GIS-Based Index of Physical Susceptibility to Flooding as a Tool for Flood Risk Management, Land. 12 (2023) 1408.
DOI: 10.3390/land12071408
Google Scholar
[7]
X. Ming, Q. Liang, X. Xia, D. Li, H. J. Fowler, Real-time flood forecasting based on a high-performance 2-D hydrodynamic model and numerical weather predictions, Water Resources Research, 56 (2020).
DOI: 10.1029/2019wr025583
Google Scholar
[8]
S. Iuliia, D. Alessio, C. N. Jeffrey, B. Paul, C. Attilio, Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography, Hydrological Sciences Journal. 64 (2019) 1769-1782.
DOI: 10.1080/02626667.2019.1671982
Google Scholar
[9]
A. Mosavi, P. Ozturk, K.W. Chau, Flood Prediction ouing Machine Learning Models: Literature Review, Water. 10 (2018) 1536.
DOI: 10.3390/w10111536
Google Scholar
[10]
B. Buchele, H. Kreibich, A. Kron, A. Thieken, J. Ihringer, P. Oberle, B. Merz, F. Nestmann, Flood-Risk Mapping: Contributions towards an Enhanced Assessment of Extreme Events and Associated Risks, Natural Hazards and Earth System Science. 6 (2006) 485-503.
DOI: 10.5194/nhess-6-485-2006
Google Scholar
[11]
P.D. Bates, M.S. Horritt, T.J. Fewtrell, A Simple Inertial Formulation of the Shallow Water Equations for Efficient Two Dimensional Flood Inundation Modelling, Journal of Hydrology. 387 (2010) 33-45.
DOI: 10.1016/j.jhydrol.2010.03.027
Google Scholar
[12]
C.M. Ferreira, F. Olivera, J.L. Irish, Arc StormSurge: Integrating Hurricane Storm Surge Modeling and GIS, Journal of the American Water Resources Association. 50 (2014) 219-233.
DOI: 10.1111/jawr.12127
Google Scholar
[13]
K.T. Mandli, C.N. Dawson, Adaptive Mesh Refinement for Storm Surge, Ocean Modelling. 75 (2014) 36-50.
DOI: 10.1016/j.ocemod.2014.01.002
Google Scholar
[14]
J.L. Garzon, C.M. Ferreira, Storm Surge Modeling in Large Estuaries: Sensitivity Analyses to Parameters and Physical Processes in the Chesapeake Bay, Journal of Marine Science and Engineering. 4 (2016) 45.
DOI: 10.3390/jmse4030045
Google Scholar
[15]
B.F. Sanders, Hydrodynamic Modeling of Urban Flood Flows and Disaster Risk Reduction, Oxford Research Encyclopedia of Natural Hazard Science. (2017).
DOI: 10.1093/acrefore/9780199389407.013.127
Google Scholar
[16]
F. Teng, Q. Shen, W. Huang, I. Ginis, Y. Cai, Characteristics of River Flood and Storm Surge Interactions in a Tidal River in Rhode Island, USA, Procedia IUTAM. 25 (2017) 60-64.
DOI: 10.1016/j.piutam.2017.09.009
Google Scholar
[17]
I. Shustikova, A. Domeneghetti, J.C. Neal, P. Bates, A. Castellarin, Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography, Hydrological Sciences Journal. 64 (2019) 1769-1782.
DOI: 10.1080/02626667.2019.1671982
Google Scholar
[18]
D.F. Muñoz, D. Yin, R. Bakhtyar, H. Moftakhari, Z. Xue, K. Mandli, C. Ferreira, Inter-model comparison of Delft3D-FM and 2D HEC-RAS for total water level prediction in coastal to inland transition zones, Journal of the American Water Resources Association. 58 (2022) 34-49.
DOI: 10.1111/1752-1688.12952
Google Scholar
[19]
A. Shrestha, L. Bhattacharjee, S. Baral, B. Thakur, N. Joshi, A. Kalra, R. Gupta, Understanding Suitability of MIKE 21 and HEC-RAS for 2D Floodplain Modeling, World Environmental and Water Resources Congress 2020. (2020) 237-253.
DOI: 10.1061/9780784482971.024
Google Scholar
[20]
A. Rodriguez, N. Bertrand, L. Pheulpin, A. Migaud, M. Abily, Comparison Between HEC-RAS and TELEMAC-2D Hydrodynamic Models of the Loire River, Integrating Levee Breaches, SimHydro 2023: New Modelling Paradigms for Water Issues. (2023).
DOI: 10.1007/978-981-97-4072-7_3
Google Scholar
[21]
J. Rodier, J. Colombani, J. Claude, K. Kallel, Monographie hydrologique du bassin de la Medjerda, Report, ORSTOM, France. (1981).
Google Scholar
[22]
M. Gharbi, A. Soualmia, D. Dartus, L, Masbernat, Floods effects on rivers morphological changes application to the Medjerda River in Tunisia, Journal of Hydrology and Hydromechanics. 64 (2016) 56-66.
DOI: 10.1515/johh-2016-0004
Google Scholar
[23]
S. Hammami, A. Soualmia, A. Kourta, Analysis and forecasting flood risk mapping of the Medjerda river at Boussalem town, in Tunisia, Engineering and Applied Science Research. 50 (2023) 449-457.
Google Scholar
[24]
S. Hammami, H. Romdhane, A. Soualmia, A. Kourta, 1D/2D coupling model to assess the impact of dredging works on the Medjerda river floods, Tunisia, Journal of Materiel and Environmental Science. 13 (2022) 825-839.
Google Scholar
[25]
E. Yalcin, Two-dimensional hydrodynamic modelling for urban flood risk assessment using unmanned aerial vehicle imagery: A case study of Kirsehir, Turkey, J. Flood Risk Manag. 12 (2019) e12499. S1.
DOI: 10.1111/jfr3.12499
Google Scholar
[26]
B. Zamani, M. Koch. Comparison between two hydrodynamic models in simulating physical processes of a reservoir with complex morphology: Maroon Reservoir. Water, 12(2023), 814
DOI: 10.3390/w12030814
Google Scholar
[27]
G. Brunner, P.E. Dwre, S. Piper, M. Jensen, B. Chacon., Combined 1D and 2D Hydraulic Modeling within HEC-RAS, World Environmental & Water Resources Congress, ASCE, EWRI, Austin, TX. (2015).
DOI: 10.1061/9780784479162.141
Google Scholar
[28]
V.A. Rangari, N.V. Umamahesh, C.M. Bhatt, Assessment of inundation risk in urban floods using HEC RAS 2D. Modelling Earth System. Environment. 5(2019), 1839–1851.
DOI: 10.1007/s40808-019-00641-8
Google Scholar
[29]
G. Li, J. Liu, W. Shao, Flood Risk Assessment Using TELEMAC-2D Models Integrated with Multi-Index Analysis in Shenzhen River Basin, China, Water. 14 (2022) 2513.
DOI: 10.3390/w14162513
Google Scholar
[30]
T. Tung Vu, P. K. T. Nguyen, L. H. C. Chua, A. W. K. Law, Two-Dimensional Hydrodynamic Modelling of Flood Inundation for a Part of the Mekong River with TELEMAC-2D, International Journal of Environment and Climate Change. 5 (2015) 162-175.
DOI: 10.9734/bjecc/2015/12885
Google Scholar
[31]
C. Brière, S. Abadie, P. Bretel, P. Lang, Assessment of TELEMAC system performances, a hydrodynamic case study of Anglet, France, Coastal Engineering. 54 (2007) 345-356.
DOI: 10.1016/j.coastaleng.2006.10.006
Google Scholar
[32]
O. Mattic, TELEMAC-2D Reference Manual, Version v8p0, Electricite de France, accessed from http://www.opentelemac.org/, 110 (2020).
Google Scholar
[33]
H. Romdhane, Experimental Study and Modeling of Free-Surface Flow in the Presence of Vegetation and Associated Sediment Transport, Earth Sciences. National Polytechnic Institute of Toulouse, France - INPT; National Agronomic Institute of Tunisia, Thesis (2019).
Google Scholar