[1]
Wazeer, A., Das, A., Abeykoon, C., Sinha, A., & Karmakar, A. (2023). Composites for electric vehicles and automotive sector: A review. Green Energy Intell. Transp., 2(1), 100043.
DOI: 10.1016/j.geits.2022.100043
Google Scholar
[2]
Ravikumar, M., & Suresh, R. (2023). Study on mechanical and machinability characteristics of n-Al2O3/SiC-reinforced Al7075 composite by design of experiment technique, Multiscale Multidiscip. Model. Exp. Des.., 6(4), 747-760
DOI: 10.1007/s41939-023-00179-4
Google Scholar
[3]
KN, U. (2022). Effect of stir casting parameters and mono/hybrid reinforcements on aluminium metal matrix composite–A review. Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., 236(9), 4904-4920.
DOI: 10.1177/09544062211052166
Google Scholar
[4]
Bhowmik, A., Kumar, R., Beemkumar, N., Kumar, A. V., Singh, G., Kulshreshta, A., ... & Santhosh, A. J. (2024). Casting of Particle Reinforced Metal Matrix Composite by Liquid State Fabrication Method: A Review. Results Eng., 103152.
DOI: 10.1016/j.rineng.2024.103152
Google Scholar
[5]
H. Patle, P. Mahendiran, B. Ratna Sunil, Dumpala Ravikumar, (2019). Hardness and sliding wear characteristics of AA7075-T6 surface composites reinforced with B4C and MoS2 particles, Mater. Res. Express, 6 086589.
DOI: 10.1088/2053-1591/ab1ff4
Google Scholar
[6]
Karthigeyan, R., Ranganath, G., & Sankaranarayanan, S. (2012). Mechanical properties and microstructure studies of aluminium (7075) alloy matrix composite reinforced with short basalt fibre. Eur. J. Sci. Res, 68(4), 606-615.
Google Scholar
[7]
Verma, N., & Vettivel, S. C. (2018). Characterization and experimental analysis of boron carbide and rice husk ash reinforced AA7075 aluminium alloy hybrid composite. J. Alloys Compd., 741, 981-998.
DOI: 10.1016/j.jallcom.2018.01.185
Google Scholar
[8]
Chechi, P., Maurya, S. K., Prasad, R., & Manna, A. (2022). Microstructural and mechanical characterization of stir cast Al-SiC/Flyash/Graphite hybrid metal matrix composite. Mater. Today: Proc., 64, 637-642.
DOI: 10.1016/j.matpr.2022.05.150
Google Scholar
[9]
Subramaniam, B., Natarajan, B., Kaliyaperumal, B., & Chelladurai, S. J. S. (2018). Investigation on mechanical properties of aluminium 7075-boron carbide-coconut shell fly ash reinforced hybrid metal matrix composites. China Foundry, 15, 449-456.
DOI: 10.1007/s41230-018-8105-3
Google Scholar
[10]
Chinnamahammad Bhasha, A., & Balamurugan, K. (2019). Fabrication and property evaluation of Al 6061+ x %(RHA+ TiC) hybrid metal matrix composite. SN Appl. Sci., 1(9), 977.
DOI: 10.1007/s42452-019-1016-0
Google Scholar
[11]
Hatti, G., Naveen, G. J., Koti, V., Uppin, V. S., Lingaraju, S. V., Janamatti, S., ... & Pujar, S. N. (2024). Green metal matrix composites: a multi-faceted study on Al alloy composites with egg shell powder and silicon carbide as reinforcements. Metall. Res. Technol., 121(6), 610.
DOI: 10.1051/metal/2024086
Google Scholar
[12]
Osunmakinde, L., Asafa, T. B., Agboola, P. O., & Durowoju, M. O. (2024). A Systemic review of the influence of eco-friendly particles on hybrid composites synthesized via stir casting technique. Discov Mech Eng, 3(1), 32.
DOI: 10.1007/s44245-024-00055-6
Google Scholar
[13]
Ramanathan, A., Krishnan, P. K., & Muraliraja, R. (2019). A review on the production of metal matrix composites through stir casting–Furnace design, properties, challenges, and research opportunities. J. Manuf. Process., 42, 213-245.
DOI: 10.1016/j.jmapro.2019.04.017
Google Scholar
[14]
Praveen, D. V., Raju, D. R., & Raju, M. J. (2021). Investigation on Wear Properties of Nickel-Coated Al2O3P-Reinforced AA-7075 Metal Matrix Composites Using Grey Relational Analysis. Trends in Mechanical and Biomedical Design: Select Proceedings of ICMechD 2019, 819-829.
DOI: 10.1007/978-981-15-4488-0_69
Google Scholar
[15]
Ekhande, P. V., Deshmanya, I. B., & Utage, S. K. (2023). Mechanical, Tribological, Thermal Properties of Aluminium–7075 Reinforced with Red Mud/Fly Ash Metal Matrix Composite: A review. Engineering Research Transcripts, 2, 9-14.
Google Scholar
[16]
Poornesh, M., Bhat, S., Gijo, E. V., & Bellairu, P. K. (2022). Multi-objective modelling and optimization of Al–Si–SiC composite material: a multi-disciplinary approach. Multiscale Multidiscip. Model. Exp. Des., 5(1), 53-66.
DOI: 10.1007/s41939-021-00105-6
Google Scholar
[17]
Vijay Praveen, D., Ranga Raju, D., Raju, M. V. J., & Nancharaiah, T. (2021). A note on preparation of electroless nickel coating on Alumina micro-particulates as the Forerunner to reinforce Al-MMCs. In Recent Advances in Smart Manufacturing and Materials: Select Proceedings of ICEM 2020 (pp.205-212). Springer Singapore.
DOI: 10.1007/978-981-16-3033-0_19
Google Scholar
[18]
Boobalan, V., & Sathish, T. (2022). A comprehensive study on boron carbide reinforcement in Aluminum-and its alloy composites. Mater. Today: Proc., 69, 1238-1241.
DOI: 10.1016/j.matpr.2022.08.319
Google Scholar
[19]
Kasar, A. K., Gupta, N., Rohatgi, P. K., & Menezes, P. L. (2020). A brief review of fly ash as reinforcement for composites with improved mechanical and tribological properties. Jom, 72, 2340-2351.
DOI: 10.1007/s11837-020-04170-z
Google Scholar
[20]
Omojola Awogbemi, Kallon Daramy, Aigbodion, Victor., (2022) Pathways for Sustainable Utilization of Waste Chicken Eggshell, J. Renew. Mater., 10(7), 1-30
DOI: 10.32604/jrm.2022.019152
Google Scholar
[21]
Gabriele De Angelis, Laura Medeghini, Aida Maria Conte, Silvano Mignardi, (2017) Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater, J. Clean. Prod., 164, 1497-1506.
DOI: 10.1016/j.jclepro.2017.07.085
Google Scholar
[22]
Sunardi, S., Ariawan, D., Surojo, E., Prabowo, A. R., Akbar, H. I., Cao, B., & Carvalho, H. (2023). Assessment of eggshell-based material as a green-composite filler: Project milestones and future potential as an engineering material. J. Mech. Behav. Mater., 32(1), 20220269.
DOI: 10.1515/jmbm-2022-0269
Google Scholar
[23]
Arunkumar, S., & Kumar, A. S. (2021). Studies on egg shell and SiC reinforced hybrid metal matrix composite for tribological applications. Silicon, 1-9.
DOI: 10.1007/s12633-021-00965-0
Google Scholar
[24]
Yadav, P., Ranjan, A., Kumar, H., Mishra, A., & Yoon, J. (2021). A contemporary review of aluminium MMC developed through stir-casting route. Materials, 14(21), 6386.
DOI: 10.3390/ma14216386
Google Scholar
[25]
Reddy, P. V., Kumar, G. S., Krishnudu, D. M., & Rao, H. R. (2020). Mechanical and wear performances of aluminium-based metal matrix composites: a review. Journal of Bio-and Tribo-Corrosion, 6(3), 83.
DOI: 10.1007/s40735-020-00379-2
Google Scholar
[26]
Srinivas, C. L., Praveen, D. V., Suresh, G., Gowtham, R., Siddu, R., Teja, B. R., & Remalli, T. B. (2022). Investigations on wear and friction characteristics of AA-2024/MOS2/Al2O3 HMMCs. Adv. Sci. Technol., 120, 41-50.
DOI: 10.4028/p-z65514
Google Scholar
[27]
Verma, A. S., Cheema, M. S., Kant, S., & Suri, N. M. (2019). Porosity study of developed Al–Mg–Si/bauxite residue metal matrix composite using advanced stir casting process. Arab. J. Sci. Eng., 44, 1543-1552.
DOI: 10.1007/s13369-018-3613-4
Google Scholar
[28]
Trolli, A., Casaccia, S., Pandarese, G., & Revel, G. M. (2021). Characterization of porosity and defects on composite materials using X-ray computed tomography and image processing. In 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace) (pp.479-484). IEEE.
DOI: 10.1109/metroaerospace51421.2021.9511763
Google Scholar
[29]
Aliyu, I., Sapuan, S. M., Zainudin, E. S., Zuhri, M. Y. M., & Ridwan, Y. (2023). Hardness and corrosion behaviour of stir cast LM26 Al/sugar palm fibre ash composites. Multidiscip. Model. Mater. Struct., 19(4), 748-765.
DOI: 10.1108/mmms-10-2022-0219
Google Scholar
[30]
Khan, A. H., Shah, S. A. A., Umar, F., Noor, U., Gul, R. M., Giasin, K., & Aamir, M. (2022). Investigating the Microstructural and Mechanical Properties of Novel Ternary Reinforced AA7075 Hybrid Metal Matrix Composite. Materials, 15(15), 5303.
DOI: 10.3390/ma15155303
Google Scholar
[31]
Chandla, N. K., Kant, S., & Goud, M. M. (2023). A review on mechanical properties of stir cast Al-2024 metal matrix composites. Adv. Mater. Process. Technol., 9(3), 948-969.
DOI: 10.1080/2374068x.2022.2106670
Google Scholar
[32]
Khalid, M. Y., Umer, R., & Khan, K. A. (2023). Review of recent trends and developments in aluminium 7075 alloy and its metal matrix composites (MMCs) for aircraft applications, Results Eng. 20 101372.
DOI: 10.1016/j.rineng.2023.101372
Google Scholar
[33]
Baradeswaran, A. E. P. A., & Perumal, A. E. (2013). Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Compos. B: Eng., 54, 146-152
DOI: 10.1016/j.compositesb.2013.05.012
Google Scholar
[34]
Pramanik, A. (2016). Effects of reinforcement on wear resistance of aluminum matrix composites. Trans. Nonferrous Met. Soc. China, 26(2), 348-358.
DOI: 10.1016/s1003-6326(16)64125-0
Google Scholar
[35]
Basavarajappa, S., Chandramohan, G., Mukund, K., Ashwin, M., & Prabu, M. (2006). Dry sliding wear behavior of Al 2219/SiCp-Gr hybrid metal matrix composites. J. Mater. Eng. Perform., 15(6), 668-674.
DOI: 10.1361/105994906x150803
Google Scholar
[36]
Vijay Praveen, D., Umamaheswar rao, P., Narendra Babu, Y., & Krugon, S. (2023). Microstructural, Mechanical and Wear Characterization of AA-2219/Si3N4/ZrO2/Graphite Hybrid Composites for Automotive Applications. Silicon, 15(12), 5283-5295.
DOI: 10.1007/s12633-023-02438-y
Google Scholar
[37]
Shinde, D. M., & Sahoo, P. (2022). Influence of speed and sliding distance on the tribological performance of submicron particulate reinforced Al-12Si/1.5 Wt % B4C composite. Int. J. Met., 16(2), 739-758.
DOI: 10.1007/s40962-021-00636-1
Google Scholar
[38]
Umanath, K., Palanikumar, K., & Selvamani, S. T. (2013). Analysis of dry sliding wear behaviour of Al6061/SiC/Al₂O₃ hybrid metal matrix composites. Composites.
DOI: 10.1016/j.compositesb.2013.04.051
Google Scholar