Development and Characterization of Sustainable Particles Reinforced AA-7075 Hybrid Metal Matrix Composites

Article Preview

Abstract:

The processing of metallic materials alone has a huge impact on resource utilization, emission, and waste generation. With the emergent ecological concerns, there is a solid thrust towards sustainable materials development. Sustainable metal matrix composites are designed to minimize environmental impacts by reducing resource consumption and energy usage and curbing waste generation. Now a days, the automotive sector is making significant strides towards a more ecological product chain by adopting sustainable reinforcements such as basalt fibres, red mud reinforcements, fly ash, cenosphere particles etc. into matrix material which significantly influence the mechanical properties. With this perspective, the present work is aimed to investigate the hardness, tensile, flexural, impact and wear characteristics of 7075 reinforced with different combinations of B4C, egg shell particles along with fly ash. The results revealed that the best mechanical and wear are measured at 3 % boron carbide, 3 % Egg shell powder and 2 % fly ash reinforced AA-7075 composite among the other developed composites. The results thus suggested that the incorporation of sustainable reinforcements along with ceramic reinforcements offer enhanced material characteristics, cost savings and environmental advantages.

You might also be interested in these eBooks

Info:

Pages:

1-15

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wazeer, A., Das, A., Abeykoon, C., Sinha, A., & Karmakar, A. (2023). Composites for electric vehicles and automotive sector: A review. Green Energy Intell. Transp., 2(1), 100043.

DOI: 10.1016/j.geits.2022.100043

Google Scholar

[2] Ravikumar, M., & Suresh, R. (2023). Study on mechanical and machinability characteristics of n-Al2O3/SiC-reinforced Al7075 composite by design of experiment technique, Multiscale Multidiscip. Model. Exp. Des.., 6(4), 747-760

DOI: 10.1007/s41939-023-00179-4

Google Scholar

[3] KN, U. (2022). Effect of stir casting parameters and mono/hybrid reinforcements on aluminium metal matrix composite–A review. Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., 236(9), 4904-4920.

DOI: 10.1177/09544062211052166

Google Scholar

[4] Bhowmik, A., Kumar, R., Beemkumar, N., Kumar, A. V., Singh, G., Kulshreshta, A., ... & Santhosh, A. J. (2024). Casting of Particle Reinforced Metal Matrix Composite by Liquid State Fabrication Method: A Review. Results Eng., 103152.

DOI: 10.1016/j.rineng.2024.103152

Google Scholar

[5] H. Patle, P. Mahendiran, B. Ratna Sunil, Dumpala Ravikumar, (2019). Hardness and sliding wear characteristics of AA7075-T6 surface composites reinforced with B4C and MoS2 particles, Mater. Res. Express, 6 086589.

DOI: 10.1088/2053-1591/ab1ff4

Google Scholar

[6] Karthigeyan, R., Ranganath, G., & Sankaranarayanan, S. (2012). Mechanical properties and microstructure studies of aluminium (7075) alloy matrix composite reinforced with short basalt fibre. Eur. J. Sci. Res, 68(4), 606-615.

Google Scholar

[7] Verma, N., & Vettivel, S. C. (2018). Characterization and experimental analysis of boron carbide and rice husk ash reinforced AA7075 aluminium alloy hybrid composite. J. Alloys Compd., 741, 981-998.

DOI: 10.1016/j.jallcom.2018.01.185

Google Scholar

[8] Chechi, P., Maurya, S. K., Prasad, R., & Manna, A. (2022). Microstructural and mechanical characterization of stir cast Al-SiC/Flyash/Graphite hybrid metal matrix composite. Mater. Today: Proc., 64, 637-642.

DOI: 10.1016/j.matpr.2022.05.150

Google Scholar

[9] Subramaniam, B., Natarajan, B., Kaliyaperumal, B., & Chelladurai, S. J. S. (2018). Investigation on mechanical properties of aluminium 7075-boron carbide-coconut shell fly ash reinforced hybrid metal matrix composites. China Foundry, 15, 449-456.

DOI: 10.1007/s41230-018-8105-3

Google Scholar

[10] Chinnamahammad Bhasha, A., & Balamurugan, K. (2019). Fabrication and property evaluation of Al 6061+ x %(RHA+ TiC) hybrid metal matrix composite. SN Appl. Sci., 1(9), 977.

DOI: 10.1007/s42452-019-1016-0

Google Scholar

[11] Hatti, G., Naveen, G. J., Koti, V., Uppin, V. S., Lingaraju, S. V., Janamatti, S., ... & Pujar, S. N. (2024). Green metal matrix composites: a multi-faceted study on Al alloy composites with egg shell powder and silicon carbide as reinforcements. Metall. Res. Technol., 121(6), 610.

DOI: 10.1051/metal/2024086

Google Scholar

[12] Osunmakinde, L., Asafa, T. B., Agboola, P. O., & Durowoju, M. O. (2024). A Systemic review of the influence of eco-friendly particles on hybrid composites synthesized via stir casting technique. Discov Mech Eng, 3(1), 32.

DOI: 10.1007/s44245-024-00055-6

Google Scholar

[13] Ramanathan, A., Krishnan, P. K., & Muraliraja, R. (2019). A review on the production of metal matrix composites through stir casting–Furnace design, properties, challenges, and research opportunities. J. Manuf. Process., 42, 213-245.

DOI: 10.1016/j.jmapro.2019.04.017

Google Scholar

[14] Praveen, D. V., Raju, D. R., & Raju, M. J. (2021). Investigation on Wear Properties of Nickel-Coated Al2O3P-Reinforced AA-7075 Metal Matrix Composites Using Grey Relational Analysis. Trends in Mechanical and Biomedical Design: Select Proceedings of ICMechD 2019, 819-829.

DOI: 10.1007/978-981-15-4488-0_69

Google Scholar

[15] Ekhande, P. V., Deshmanya, I. B., & Utage, S. K. (2023). Mechanical, Tribological, Thermal Properties of Aluminium–7075 Reinforced with Red Mud/Fly Ash Metal Matrix Composite: A review. Engineering Research Transcripts, 2, 9-14.

Google Scholar

[16] Poornesh, M., Bhat, S., Gijo, E. V., & Bellairu, P. K. (2022). Multi-objective modelling and optimization of Al–Si–SiC composite material: a multi-disciplinary approach. Multiscale Multidiscip. Model. Exp. Des., 5(1), 53-66.

DOI: 10.1007/s41939-021-00105-6

Google Scholar

[17] Vijay Praveen, D., Ranga Raju, D., Raju, M. V. J., & Nancharaiah, T. (2021). A note on preparation of electroless nickel coating on Alumina micro-particulates as the Forerunner to reinforce Al-MMCs. In Recent Advances in Smart Manufacturing and Materials: Select Proceedings of ICEM 2020 (pp.205-212). Springer Singapore.

DOI: 10.1007/978-981-16-3033-0_19

Google Scholar

[18] Boobalan, V., & Sathish, T. (2022). A comprehensive study on boron carbide reinforcement in Aluminum-and its alloy composites. Mater. Today: Proc., 69, 1238-1241.

DOI: 10.1016/j.matpr.2022.08.319

Google Scholar

[19] Kasar, A. K., Gupta, N., Rohatgi, P. K., & Menezes, P. L. (2020). A brief review of fly ash as reinforcement for composites with improved mechanical and tribological properties. Jom, 72, 2340-2351.

DOI: 10.1007/s11837-020-04170-z

Google Scholar

[20] Omojola Awogbemi, Kallon Daramy, Aigbodion, Victor., (2022) Pathways for Sustainable Utilization of Waste Chicken Eggshell, J. Renew. Mater., 10(7), 1-30

DOI: 10.32604/jrm.2022.019152

Google Scholar

[21] Gabriele De Angelis, Laura Medeghini, Aida Maria Conte, Silvano Mignardi, (2017) Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater, J. Clean. Prod., 164, 1497-1506.

DOI: 10.1016/j.jclepro.2017.07.085

Google Scholar

[22] Sunardi, S., Ariawan, D., Surojo, E., Prabowo, A. R., Akbar, H. I., Cao, B., & Carvalho, H. (2023). Assessment of eggshell-based material as a green-composite filler: Project milestones and future potential as an engineering material. J. Mech. Behav. Mater., 32(1), 20220269.

DOI: 10.1515/jmbm-2022-0269

Google Scholar

[23] Arunkumar, S., & Kumar, A. S. (2021). Studies on egg shell and SiC reinforced hybrid metal matrix composite for tribological applications. Silicon, 1-9.

DOI: 10.1007/s12633-021-00965-0

Google Scholar

[24] Yadav, P., Ranjan, A., Kumar, H., Mishra, A., & Yoon, J. (2021). A contemporary review of aluminium MMC developed through stir-casting route. Materials, 14(21), 6386.

DOI: 10.3390/ma14216386

Google Scholar

[25] Reddy, P. V., Kumar, G. S., Krishnudu, D. M., & Rao, H. R. (2020). Mechanical and wear performances of aluminium-based metal matrix composites: a review. Journal of Bio-and Tribo-Corrosion, 6(3), 83.

DOI: 10.1007/s40735-020-00379-2

Google Scholar

[26] Srinivas, C. L., Praveen, D. V., Suresh, G., Gowtham, R., Siddu, R., Teja, B. R., & Remalli, T. B. (2022). Investigations on wear and friction characteristics of AA-2024/MOS2/Al2O3 HMMCs. Adv. Sci. Technol., 120, 41-50.

DOI: 10.4028/p-z65514

Google Scholar

[27] Verma, A. S., Cheema, M. S., Kant, S., & Suri, N. M. (2019). Porosity study of developed Al–Mg–Si/bauxite residue metal matrix composite using advanced stir casting process. Arab. J. Sci. Eng., 44, 1543-1552.

DOI: 10.1007/s13369-018-3613-4

Google Scholar

[28] Trolli, A., Casaccia, S., Pandarese, G., & Revel, G. M. (2021). Characterization of porosity and defects on composite materials using X-ray computed tomography and image processing. In 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace) (pp.479-484). IEEE.

DOI: 10.1109/metroaerospace51421.2021.9511763

Google Scholar

[29] Aliyu, I., Sapuan, S. M., Zainudin, E. S., Zuhri, M. Y. M., & Ridwan, Y. (2023). Hardness and corrosion behaviour of stir cast LM26 Al/sugar palm fibre ash composites. Multidiscip. Model. Mater. Struct., 19(4), 748-765.

DOI: 10.1108/mmms-10-2022-0219

Google Scholar

[30] Khan, A. H., Shah, S. A. A., Umar, F., Noor, U., Gul, R. M., Giasin, K., & Aamir, M. (2022). Investigating the Microstructural and Mechanical Properties of Novel Ternary Reinforced AA7075 Hybrid Metal Matrix Composite. Materials, 15(15), 5303.

DOI: 10.3390/ma15155303

Google Scholar

[31] Chandla, N. K., Kant, S., & Goud, M. M. (2023). A review on mechanical properties of stir cast Al-2024 metal matrix composites. Adv. Mater. Process. Technol., 9(3), 948-969.

DOI: 10.1080/2374068x.2022.2106670

Google Scholar

[32] Khalid, M. Y., Umer, R., & Khan, K. A. (2023). Review of recent trends and developments in aluminium 7075 alloy and its metal matrix composites (MMCs) for aircraft applications, Results Eng. 20 101372.

DOI: 10.1016/j.rineng.2023.101372

Google Scholar

[33] Baradeswaran, A. E. P. A., & Perumal, A. E. (2013). Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Compos. B: Eng., 54, 146-152

DOI: 10.1016/j.compositesb.2013.05.012

Google Scholar

[34] Pramanik, A. (2016). Effects of reinforcement on wear resistance of aluminum matrix composites. Trans. Nonferrous Met. Soc. China, 26(2), 348-358.

DOI: 10.1016/s1003-6326(16)64125-0

Google Scholar

[35] Basavarajappa, S., Chandramohan, G., Mukund, K., Ashwin, M., & Prabu, M. (2006). Dry sliding wear behavior of Al 2219/SiCp-Gr hybrid metal matrix composites. J. Mater. Eng. Perform., 15(6), 668-674.

DOI: 10.1361/105994906x150803

Google Scholar

[36] Vijay Praveen, D., Umamaheswar rao, P., Narendra Babu, Y., & Krugon, S. (2023). Microstructural, Mechanical and Wear Characterization of AA-2219/Si3N4/ZrO2/Graphite Hybrid Composites for Automotive Applications. Silicon, 15(12), 5283-5295.

DOI: 10.1007/s12633-023-02438-y

Google Scholar

[37] Shinde, D. M., & Sahoo, P. (2022). Influence of speed and sliding distance on the tribological performance of submicron particulate reinforced Al-12Si/1.5 Wt % B4C composite. Int. J. Met., 16(2), 739-758.

DOI: 10.1007/s40962-021-00636-1

Google Scholar

[38] Umanath, K., Palanikumar, K., & Selvamani, S. T. (2013). Analysis of dry sliding wear behaviour of Al6061/SiC/Al₂O₃ hybrid metal matrix composites. Composites.

DOI: 10.1016/j.compositesb.2013.04.051

Google Scholar