[1]
Energy Institute, "Statistical Review of World Energy," 2024.
Google Scholar
[2]
T. Karuppiah and E. V. Azariah, "Biomass Pretreatment for Enhancement of Biogas Production," Anaerobic Digestion, p.1–22, 2019.
DOI: 10.5772/intechopen.82088
Google Scholar
[3]
S. Saeid and J. F. M. Denayer, "Biogas upgrading by adsorption processes: Mathematical modeling, simulation and optimization approach – A review," J Environ Chem Eng, vol. 10, no. 3, p.107483, 2022.
DOI: 10.1016/j.jece.2022.107483
Google Scholar
[4]
M. Miltner, A. Makaruk, and M. Harasek, "Review on available biogas upgrading technologies and innovations towards advanced solutions," J Clean Prod, vol. 161, p.1329–1337, 2017.
DOI: 10.1016/j.jclepro.2017.06.045
Google Scholar
[5]
J. L. Linville, Y. Shen, P. A. Ignacio-de Leon, R. P. Schoene, and M. Urgun-Demirtas, "In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale," Waste Management and Research, vol. 35, no. 6, p.669–679, 2017.
DOI: 10.1177/0734242X17704716
Google Scholar
[6]
M. A. Al-Ghouti and D. A. Da'ana, "Guidelines for the use and interpretation of adsorption isotherm models: A review," J Hazard Mater, vol. 393, no. February, p.122383, 2020.
DOI: 10.1016/j.jhazmat.2020.122383
Google Scholar
[7]
I. Durán, F. Rubiera, and C. Pevida, "Modeling a biogas upgrading PSA unit with a sustainable activated carbon derived from pine sawdust. Sensitivity analysis on the adsorption of CO2 and CH4 mixtures," Chemical Engineering Journal, vol. 428, 2022.
DOI: 10.1016/j.cej.2021.132564
Google Scholar
[8]
Y. Shen, W. Shi, D. Zhang, P. Na, and B. Fu, "The removal and capture of CO2 from biogas by vacuum pressure swing process using silica gel," Journal of CO2 Utilization, vol. 27, no. May, p.259–271, 2018.
DOI: 10.1016/j.jcou.2018.08.001
Google Scholar
[9]
B. Liu et al., "Experimental investigation on separation and energy-efficiency performance of temperature swing adsorption system for CO2 capture," Sep Purif Technol, vol. 227, 2019.
DOI: 10.1016/j.seppur.2019.06.008
Google Scholar
[10]
R. P. P. L. Ribeiro, C. A. Grande, and A. E. Rodrigues, "Electric Swing Adsorption for Gas Separation and Purification: A Review," Separation Science and Technology (Philadelphia), vol. 49, no. 13, p.1985–2002, 2014.
DOI: 10.1080/01496395.2014.915854
Google Scholar
[11]
A. Ntiamoah, J. Ling, P. Xiao, P. A. Webley, and Y. Zhai, "CO2 Capture by Temperature Swing Adsorption: Use of Hot CO2-Rich Gas for Regeneration," Ind Eng Chem Res, vol. 55, no. 3, p.703–713, 2016.
DOI: 10.1021/acs.iecr.5b01384
Google Scholar
[12]
L. Keller, T. Lohaus, L. Abduly, G. Hadler, and M. Wessling, "Electrical swing adsorption on functionalized hollow fibers," Chemical Engineering Journal, vol. 371, no. February, p.107–117, 2019.
DOI: 10.1016/j.cej.2019.04.029
Google Scholar
[13]
E. Meloni, M. Martino, P. Pullumbi, F. Brandani, and V. Palma, "Intensification of TSA processes using a microwave-assisted regeneration step," Chemical Engineering and Processing - Process Intensification, vol. 160, p.108291, 2021.
DOI: 10.1016/j.cep.2020.108291
Google Scholar
[14]
M. Gholami, B. Verougstraete, R. Vanoudenhoven, G. V. Baron, T. Van Assche, and J. F. M. Denayer, "Induction heating as an alternative electrified heating method for carbon capture process," Chemical Engineering Journal, vol. 431, no. August 2021, 2022.
DOI: 10.1016/j.cej.2021.133380
Google Scholar
[15]
A. Pereira, A. F. P. Ferreira, A. Rodrigues, A. M. Ribeiro, and M. J. Regufe, "Evaluation of the potential of a 3D-printed hybrid zeolite 13X/activated carbon material for CO2/N2 separation using electric swing adsorption," Chemical Engineering Journal, vol. 450, p.0–3, 2022.
DOI: 10.1016/j.cej.2022.138197
Google Scholar
[16]
A. Al Moinee, A. A. Rownaghi, and F. Rezaei, "Challenges and Opportunities in Electrification of Adsorptive Separation Processes," ACS Energy Lett, vol. 9, no. 3, p.1228–1248, 2024.
DOI: 10.1021/acsenergylett.3c02340
Google Scholar
[17]
W. H. Lee, X. Zhang, S. Banerjee, C. W. Jones, M. J. Realff, and R. P. Lively, "Sorbent-coated carbon fibers for direct air capture using electrically driven temperature swing adsorption," Joule, vol. 7, no. 6, p.1241–1259, 2023.
DOI: 10.1016/j.joule.2023.05.016
Google Scholar
[18]
R. P. Lively, R. R. Chance, and W. J. Koros, "Enabling low-cost CO2 capture via heat integration," Ind Eng Chem Res, vol. 49, no. 16, p.7550–7562, Aug. 2010.
DOI: 10.1021/ie100806g
Google Scholar
[19]
R. Zhao, L. Liu, L. Zhao, S. Deng, and H. Li, "Thermodynamic analysis on carbon dioxide capture by Electric Swing Adsorption (ESA) technology," Journal of CO2 Utilization, vol. 26, no. March, p.388–396, 2018.
DOI: 10.1016/j.jcou.2018.05.026
Google Scholar
[20]
C. A. Grande, R. P. P. L. Ribeiro, and A. E. Rodrigues, "CO2 capture from NGCC power stations using Electric Swing Adsorption (ESA)," Energy and Fuels, vol. 23, no. 5, p.2797–2803, 2009.
DOI: 10.1021/ef8010756
Google Scholar
[21]
S. H. Moon and J. W. Shim, "A novel process for CO2/CH4 gas separation on activated carbon fibers-electric swing adsorption," J Colloid Interface Sci, vol. 298, no. 2, p.523–528, 2006.
DOI: 10.1016/j.jcis.2005.12.052
Google Scholar
[22]
M. Schoukens, M. Gholami, G. V. Baron, T. Van Assche, and J. F. M. Denayer, "Hybrid induction vacuum swing adsorption, a rapid and fully electrified carbon capture process," Chemical Engineering Journal, vol. 459, no. November 2022, p.141587, 2023.
DOI: 10.1016/j.cej.2023.141587
Google Scholar
[23]
K. Zhou, S. Chaemchuen, and F. Verpoort, "Alternative materials in technologies for Biogas upgrading via CO2 capture," 2017, Elsevier Ltd.
DOI: 10.1016/j.rser.2017.05.198
Google Scholar
[24]
N. Abuelnoor, A. AlHajaj, M. Khaleel, L. F. Vega, and M. R. M. Abu-Zahra, "Activated carbons from biomass-based sources for CO2 capture applications," Chemosphere, vol. 282, no. May, p.131111, 2021.
DOI: 10.1016/j.chemosphere.2021.131111
Google Scholar
[25]
A. M. Aljeboree, A. N. Alshirifi, and A. F. Alkaim, "Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon," Arabian Journal of Chemistry, vol. 10, pp. S3381–S3393, 2017.
DOI: 10.1016/j.arabjc.2014.01.020
Google Scholar
[26]
B. Verougstraete et al., "Electrical swing adsorption on 3D-printed activated carbon monoliths for CO2 capture from biogas," Sep Purif Technol, vol. 299, no. June, p.121660, 2022.
DOI: 10.1016/j.seppur.2022.121660
Google Scholar
[27]
E. Surra et al., "Evaluation of activated carbons produced from Maize Cob Waste for adsorption-based CO2 separation and biogas upgrading," J Environ Chem Eng, vol. 10, no. 1, Feb. 2022.
DOI: 10.1016/j.jece.2021.107065
Google Scholar
[28]
N. Rajasekaran, M. Vinoba, H. Al-Sheeha, and M. S. Rana, "The Synergistic Character of Highly N-Doped Coconut–Shell Activated Carbon for Efficient CO2 Capture," Chemistry Select, vol. 6, no. 34, p.9149–9156, 2021.
DOI: 10.1002/slct.202102522
Google Scholar
[29]
A. Abdeljaoued, N. Querejeta, I. Durán, N. Álvarez-Gutiérrez, C. Pevida, and M. H. Chahbani, "Preparation and evaluation of a coconut shell-based activated carbon for CO2/CH4 separation," Energies (Basel), vol. 11, no. 7, p.1–14, 2018.
DOI: 10.3390/en11071748
Google Scholar
[30]
A. Ali Abd, H. Jihad Kadhim Shabbani, Z. Helwani, and M. Roslee Othman, "Novel design of pressure swing adsorption using compact plates for adsorption heat recuperation of CO2 capture in biomethane upgrading process," Energy Convers Manag, vol. 268, no. July, p.115999, 2022.
DOI: 10.1016/j.enconman.2022.115999
Google Scholar
[31]
B. Kottititum, T. Srinophakun, N. Phongsai, and Q. T. Phung, "Optimization of a Six-Step Pressure Swing Adsorption Process for Biogas Separation on a Commercial Scale," Applied Science, vol. 10, no. 14, p.4692, 2020.
DOI: 10.3390/app10144692
Google Scholar
[32]
B. Verougstraete et al., "Electrical swing adsorption on 3D-printed activated carbon monoliths for CO2 capture from biogas," Sep Purif Technol, vol. 299, no. June, p.121660, 2022.
DOI: 10.1016/j.seppur.2022.121660
Google Scholar
[33]
A. Zapata Ballesteros, N. De Witte, J. F. M. Denayer, and T. R. C. Van Assche, "Effect of pellet size on PSA performance: monolayer and multilayer bed case study for biogas upgrading," Adsorption, vol. 28, no. 5–6, p.197–208, 2022.
DOI: 10.1007/s10450-022-00365-9
Google Scholar
[34]
Irvan, B. Trisakti, S. Maulina, R. Sidabutar, Iriany, and M. S. Takriff, "Adsorption-desorption system for CO2 removal in biogas using natural zeolite-based adsorbent," Journal of Engineering Science and Technology, vol. 13, no. 10, p.3058–3070, 2018.
Google Scholar
[35]
E. Mulu, M. M'Arimi, R. c. Ramkat, and A. Kiprop, "Biogas upgrade using modified natural clay," Energy Conversion and Management: X, vol. 12, 2021.
DOI: 10.1016/j.ecmx.2021.100134
Google Scholar
[36]
J. M. Mutunga, H. Ndiritu, M. Hawi, and P. Oketch, "Experimental study of four-step thermal swing adsorption cycle to upgrade biogas obtained from anaerobic digestion," Energy Storage and Saving, vol. 3, no. 4, p.278–287, Dec. 2024.
DOI: 10.1016/j.enss.2024.10.001
Google Scholar
[37]
N. A. Saputra, I. S. Saputra, K. Yuniarti, and Andianto, "Preparation and characterization of Gigantochloa robusta activated carbon to reduce COD levels of pharmaceutical waste," in IOP Conference Series: Materials Science and Engineering, 2020.
DOI: 10.1088/1757-899X/935/1/012045
Google Scholar
[38]
G. Nam et al., "Equilibrium Isotherms of CH4, C2H6, CH4, N2, and H2 on Zeolite 5A Using a Static Volumetric Method," Journal of Chemical Engineering Data, vol. 50, p.72–76, 2005.
Google Scholar
[39]
Y. Zheng et al., "Influence of temperature on adsorption selectivity: Coal-based activated carbon for CH4 enrichment from coal mine methane," Powder Technol, vol. 347, p.42–49, 2019.
DOI: 10.1016/j.powtec.2019.02.042
Google Scholar
[40]
F. Rouquerol, J. Rouquerol, K. S. W. Sing, & Llewellyn, P., and G. Maurin, Adsorption by Powders and Porous Solids. 2014.
DOI: 10.1016/b978-0-08-097035-6.00001-2
Google Scholar
[41]
R. Dungani, S. S. Munawar, T. Karliati, J. Malik, P. Aditiawati, and Sulistyono, "Study of Characterization of Activated Carbon from Coconut Shells on Various Particle Scales as Filler Agent in Composite Materials," Journal of the Korean Wood Science and Technology, vol. 50, no. 4, p.256–271, 2022.
DOI: 10.5658/WOOD.2022.50.4.256
Google Scholar
[42]
D. Higai, Z. Huang, and E. W. Qian, "Preparation and surface characteristics of phosphoric acid-activated carbon from coconut shell in air," Environ Prog Sustain Energy, vol. 40, no. 2, Mar. 2021.
DOI: 10.1002/ep.13509
Google Scholar
[43]
X. Song, J. Gong, Y. Zeng, X. Zhan, and L. Wang, "Adsorption and separation of carbon dioxide and methane on carbonaceous adsorbents," Materwiss Werksttech, vol. 52, no. 11, p.1267–1280, 2021.
DOI: 10.1002/mawe.202100119
Google Scholar
[44]
S. K. Shukla, N. R. S. Al Mushaiqri, H. M. Al Subhi, K. Yoo, and H. Al Sadeq, "Low-cost activated carbon production from organic waste and its utilization for wastewater treatment," Appl Water Sci, vol. 10, no. 2, p.1–9, 2020.
DOI: 10.1007/s13201-020-1145-z
Google Scholar
[45]
D. Papurello, M. Gandiglio, J. Kafashan, and A. Lanzini, "Biogas Purification : A Comparison of Adsorption Wood-Derived Char Using Isotherm Equations," Processes, vol. 7, no. v, p.774, 2019.
DOI: 10.3390/pr7100774
Google Scholar
[46]
J. Gan, Z. Zhou, and A. Yu, "Effect of particle shape and size on effective thermal conductivity of packed beds," Powder Technol, vol. 311, p.157–166, 2017.
DOI: 10.1016/j.powtec.2017.01.024
Google Scholar
[47]
F. Benyahia and K. E. O'Neill, "Enhanced voidage correlations for packed beds of various particle shapes and sizes," Particulate Science and Technology, vol. 23, no. 2, p.169–177, 2005.
DOI: 10.1080/02726350590922242
Google Scholar
[48]
A. Ali Abd, M. Roslee Othman, and Z. Helwani, "Mass transfer approaches for CO2 separation in non-isothermal and non-adiabatic pressure swing adsorption system for biomethane upgrading," Fuel, vol. 331, no. P1, p.125642, 2023.
DOI: 10.1016/j.fuel.2022.125642
Google Scholar
[49]
F. I. Njuguna, H. M. Ndiritu, B. B. Gathitu, M. Hawi, and J. M. Munyalo, "Experimental investigation and optimization of the gasification parameters of macadamia nutshells in a batch-fed bubbling fluidized bed gasifier with air preheating," Energy Storage and Saving, vol. 2, no. 4, p.559–570, Dec. 2023.
DOI: 10.1016/j.enss.2023.07.001
Google Scholar
[50]
D. L. Chen, N. Wang, C. Xu, G. Tu, W. Zhu, and R. Krishna, "A combined theoretical and experimental analysis on transient breakthroughs of C2H6/C2H4 in fixed beds packed with ZIF-7," Microporous and Mesoporous Materials, vol. 208, p.55–65, 2015.
DOI: 10.1016/j.micromeso.2015.01.019
Google Scholar
[51]
X. Chen, J. Wang, T. Du, L. Liu, Y. Wang, and G. Kevin Li, "Post-combustion CO2 capture using exchanger type vacuum temperature swing adsorption: Cycle design and performance analysis," Energy Convers Manag, vol. 296, no. August, p.117625, 2023.
DOI: 10.1016/j.enconman.2023.117625
Google Scholar
[52]
A. Ali Abd, H. Jihad Kadhim Shabbani, Z. Helwani, and M. Roslee Othman, "Novel design of pressure swing adsorption using compact plates for adsorption heat recuperation of CO2 capture in biomethane upgrading process," Energy Convers Manag, vol. 268, no. July, p.115999, 2022.
DOI: 10.1016/j.enconman.2022.115999
Google Scholar
[53]
A. Alfonso-Cardero, J. Pagés-Díaz, F. Contino, K. Rajendran, and J. Lorenzo-LLanes, "Process simulation and techno-economic assessment of vinasse-to-biogas in Cuba: Deterministic and uncertainty analysis," Chemical Engineering Research and Design, vol. 169, p.33–45, May 2021.
DOI: 10.1016/j.cherd.2021.02.031
Google Scholar
[54]
R. Canevesi and C. A. Grande, "Biogas upgrading by pressure swing adsorption using zeolite 4A. Effect of purge on process performance," Sep Purif Technol, vol. 309, no. October 2022, p.123015, 2023.
DOI: 10.1016/j.seppur.2022.123015
Google Scholar