Development of an Algorithm Based on an Artificial Neural Network to Predict the Thermal Profile of Weld Joints of Dissimilar High Strength Steels Using GMAW Process

Article Preview

Abstract:

In developing an accurate modelling technique of thermal profile parameters when welding High-strength steel, an algorithm based on an artificial neural network (ANN) for predicting cooling time using Gas Metal Arc Welding (GMAW) was set up. The neural network developed has a 4-20-1 architecture with the input parameters of the voltage of the station (U), welding current intensity (I), welding speed (V), and heat input (Q) with the output parameter Cooling time (∆t8/5). A protocol has been developed with the MATLAB R2020a software containing three neural networks. The goal was to determine the neural network that has the lowest root mean square error (MSE). The results showed that the first system produced an MSE of 1.295 × 10−3 and a regression R = 0.995 with a Relative error of 0 for 8 of the initial 14 data. The second system produced an MSE of 4.278 × 10−3 with a regression R = 0.978 with 11/15 showing an error of 0. Finally, the third system, consisting of associated experimental data to the analytical data produced an MSE of 2.506 × 10−3 with a regression R = 0.972 with a slight difference between the input data and predicted data on all 29 points. The results obtained by the first two systems are satisfactory and developed neural networks can be found reliable for predicting cooling times of welded joints of steel high-strength.

You might also be interested in these eBooks

Info:

Pages:

17-32

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Goswami, M.K. Deka, M. Roy, Artificial intelligence in material engineering: A review on applications of artificial intelligence in material engineering. Adv. Eng. Mater. 2023, 25, 2300104.

DOI: 10.1002/adem.202300104

Google Scholar

[2] F. Bayock, P. Kah, M. Belinga, P. Layus, Effect of Heat Input and Undermatched Filler Wire on the Microstructure and Mechanical Properties of Dissimilar S700MC/S960QC High-Strength Steels. Metals, 9 883 (2019) 1-20.

DOI: 10.3390/met9080883

Google Scholar

[3] K.S. Patel, N. Trivedi, D.B. Shah, S.J. Joshi, Prediction of tensile strength using machine learning algorithms in fused deposition modeling. Proc. Inst. Mech. Eng. Part E 2024, in press.

Google Scholar

[4] I. Owunna and A. E. IKPE, Modelling and prediction of the mechanical properties of TIG welded joint for AISI 4130 low carbon steel plates using artificial neural network (ANN) Approach, Nigerian J. of Tech. (NIJOTECH) 38 (2019) 201-222.

DOI: 10.4314/njt.v38i1.16

Google Scholar

[5] N.D. Ghetiya and K.M. Patel, Tensile strength prediction of friction stir welded aluminum alloy using artificial neural network. Department of Mechanical Engineering, Institute of Technology, Nirma University, Ahmedabad 382481, India, 2014.

DOI: 10.1016/j.protcy.2014.08.036

Google Scholar

[6] L. Alberto Ciro De Filippis, L. Maria Serio, F. Facchini, G. Mummolo, A. Domenico, Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network, Department of Mechanics Mathematics and Management (DMMM), Polytechnic of Bari, Bari 70126, Italy, 2016.

DOI: 10.3390/ma9110915

Google Scholar

[7] R. Ajith Raj and M. Anand, Modeling and Prediction of Mechanical Strength in Electron Beam Welded Dissimilar Metal Joints of Stainless Steel 304 and Copper Using Grey Relation Analysis. Inter. J. of Eng. and Tech. 7 (2024) 198-201.

DOI: 10.14419/ijet.v7i3.6.14969

Google Scholar

[8] A. Mishra, Artificial Intelligence Algorithms for the Analysis of Mechanical Property of Friction Stir Welded Joints by using Python Programming, Weld. Tech. Review, 92 (2020) 7-16.

DOI: 10.26628/wtr.v92i6.1120

Google Scholar

[9] F. Bayock, M. Kesse, M. Yebga, E. Ndjem, R. Nlend, Finite Element Simulation and Experimental Analysis of the Thermo-Mechanical Properties of Dissimilar S275 and 316L Austenite Stainless Steels using the RFW Process, Eng. Tech. and App. Sci. Res. 14 (2024) 18718.

DOI: 10.48084/etasr.8766

Google Scholar

[10] J. Woo Moon, S. Kwon Jung, Development of a thermal control algorithm using artificial neural network models for improved thermal comfort and energy efficiency in accommodation buildings, Appl. Thermal Eng. 103 (2016) 1135-1144.

DOI: 10.1016/j.applthermaleng.2016.05.002

Google Scholar

[11] Gyasi, E. A., Kah, P., Wu, H., Kesse M. A. Modelling of an artificial intelligence system to predict structural integrity in robotic GMAW of UHSS fillet welded joints", International Journal of Adv. Manuf. Tech. 93 (2017) 1139‑1155.

DOI: 10.1007/s00170-017-0554-0

Google Scholar

[12] R. Mahadevan, A. Jagan, L. Pavithran, A. Shrivastava, S. Kumaran, Intelligent welding by using machine learning technique, Mater. Today Proc. 46 (2021) 7402-7410.

DOI: 10.1016/j.matpr.2020.12.1149

Google Scholar

[13] D. Palanisamy, A. Devaraju, M. Natarajan, T, Pasupuleti, Application of hybrid ANFIS Tool for laser beam welding of Inconel 625 Alloy, Diffusion Found. And Mater. Appl. 34 (2023) 27-40.

DOI: 10.4028/p-l3b5ow

Google Scholar

[14] M. Alhassan, Y. Bashiru, Carbon Equivalent Fundamentals in Evaluating the Weldability of Micro alloy and Low Alloy Steels, World J. of Eng. and Tech. 9 (2021) 782-792.

DOI: 10.4236/wjet.2021.94054

Google Scholar

[15] S.O. Sada, S.C. Ikpeseni, Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance, Heliyon, 7 (2021) e06136.

DOI: 10.1016/j.heliyon.2021.e06136

Google Scholar

[16] G. Elatharasan et V. S. S. Kumar, An Experimental Analysis and Optimization of Process Parameter on Friction Stir Welding of AA 6061-T6 Aluminum Alloy using RSM, Proc. Eng., vol. 64 (2013) 1227‑1234.

DOI: 10.1016/j.proeng.2013.09.202

Google Scholar

[17] S. Gupta, K. Pandey, et R. Kumar, Artificial intelligence-based modelling and multi-objective optimization of friction stir welding of dissimilar AA5083-O and AA6063-T6 aluminum alloys, Proceedings of the Institution of Mechanical Engineers, Part L: J. of Mater.: Design and Appl. 232 (2016) 273-286.

DOI: 10.1177/1464420715627293

Google Scholar

[18] C. Payares-Asprino, Prediction of Mechanical Properties as a Function of Welding Variables in Robotic Gas Metal Arc Welding of Duplex Stainless Steels SAF 2205 Welds Through Artificial Neural Networks, Adv. in Mater. Sci. 21 (2021).

DOI: 10.2478/adms-2021-0019

Google Scholar

[19] O. S. Odebiyi, S. M. Adedayo, L. A. Tunji, et M. O. Onuorah, A review of weldability of carbon steel in arc-based welding processes, Cogent Engineering, 6 (2019) 1609180.

DOI: 10.1080/23311916.2019.1609180

Google Scholar

[20] A. Azizi, A. Vatankhah Barenji, R. Barenji, et M. Hashemipour, Modeling Mechanical Properties of FSW Thick Pure Copper Plates and Optimizing It Utilizing Artificial Intelligence Techniques, Inter. J. of Sensor Netw. and Data Commun. 5 (2016) 1000142.

DOI: 10.4172/2090-4886.1000142

Google Scholar

[21] R. Rajamanickam, P. Giridharan, et K. B. Senthil, « Predicting the tensile strength of friction stir welded dissimilar aluminum alloy using ANN », Inter. J. of Civil Eng. and Tech. 8 (2017) 345‑353.

Google Scholar

[22] A. Mishra et T. Pathak, Estimation of Grain Size Distribution of Friction Stir Welded Joint by using Machine Learning Approach, ADCAIJ: Adv. in Distributed Computing and Art. Int. J. 10 (2020) 99‑110.

DOI: 10.14201/adcaij202110199110

Google Scholar

[23] L. De Filippis, L. Serio, F. Facchini, G. Mummolo, et L. Antonio Domenico, Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network, Mater. 9 (2016), 915.

DOI: 10.3390/ma9110915

Google Scholar

[24] N.D. Ghetiya et K.M. Patel, Prediction of Tensile Strength in Friction Stir Welded Aluminum Alloy Using Artificial Neural Network, Proc. Tech., 14 (2014), 274‑281.

DOI: 10.1016/j.protcy.2014.08.036

Google Scholar

[25] S. A. Shahdad, J. F. McCabe, S. Bull, S. Rusby, et R. W. Wassell, Hardness measured with traditional Vickers and Martens hardness methods, Dental Materials, 23 (2007), 1079‑1085.

DOI: 10.1016/j.dental.2006.10.001

Google Scholar

[26] H. Cao et M. D. Thouless, Tensile Tests of Ceramic-Matrix Composites: Theory and Experiment, J. of the American Ceramic Society, 73 (1990), 2091‑2094.

DOI: 10.1111/j.1151-2916.1990.tb05273.x

Google Scholar

[27] A. Netto, F. Bayock, P. Kah, Optimization of GMAW Process Parameters in Ultra-High-Strength Steel Based on Prediction A - Metals 13 (2023) 1447.

DOI: 10.3390/met13081447

Google Scholar

[28] S. Toorandaz, K. Taherkhani, F. Liravi, E. Toyserkani, A novel machine learning-based approach for in-situ surface roughness prediction in laser powder-bed fusion, Additive Manufacturing 91 (2024) 104354.

DOI: 10.1016/j.addma.2024.104354

Google Scholar

[29] T. Wordofa, J. Perumalla, A. Sharma, an artificial intelligence system for quality level-based prediction of welding parameters for robotic gas metal arc welding, the inter. J. of Adv. Manuf. Tech. 232 (2024) 3293-3212.

DOI: 10.1007/s00170-024-13518-7

Google Scholar

[30] O. Lofinmakin, S. Oro-oghene Sada, I. Emovon, D. Olusegun & S. Ayoola Oke, Prediction of optimal mild steel weld parameters using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique, Inter. J. of Adv. Manuf. Tech., 131 (2024) 1203–1210.

DOI: 10.1007/s00170-024-13079-9

Google Scholar

[31] F. Bayock, R. Nlend, E. Mbou, M. Appiah, B. Kamdem, P. Kah, Development of an Artificial Intelligence-Based Algorithm for Predicting the Mechanical Properties of Weld Joints of Dissimilar S700MC-S960QC Steel Structures, Civil Eng. Infrast. J. xx,xx (2025) in press.

Google Scholar

[32] Z. Biao, W. Baigang, X. Weihua, A. Ullah, T. Zhang, Wang H. Development of a machine learning model for prediction of continuous cooling transformation diagrams in welding heat-affected zone, J. Mater. Sci. 58 (2023) 4795-4808.

DOI: 10.1007/s10853-023-08322-9

Google Scholar

[33] J. Kahnamouei, M. Moallem, Advancements in control systems and integration of artificial intelligence in welding robots: A review, Ocean Engineering 312 (2024) 119294

DOI: 10.1016/j.oceaneng.2024.119294

Google Scholar

[34] P. Akbari, M. Zamani, A. Mostafaei, Machine learning prediction of mechanical properties in metal additive manufacturing, Additive Manufacturing, 91 (2024) 104320.

DOI: 10.1016/j.addma.2024.104320

Google Scholar

[35] F. Yan, Y.-C. Chan, A. Saboo, J. Shah, G.B. Olson, W. Chen, Data-driven prediction of mechanical properties in support of rapid certification of additively manufactured alloys, CMES Comput. Model. Eng. Sci. 117 (2018) 343–366.

DOI: 10.31614/cmes.2018.04452

Google Scholar

[36] Z. Xie, F. Chen, L. Wang, W. Ge, W. Yan, Data-driven prediction of keyhole features in metal additive manufacturing based on physics-based simulation, J. Intel. Manuf. 35 (2023) 1–14.

DOI: 10.1007/s10845-023-02157-6

Google Scholar