[1]
L. Goswami, M.K. Deka, M. Roy, Artificial intelligence in material engineering: A review on applications of artificial intelligence in material engineering. Adv. Eng. Mater. 2023, 25, 2300104.
DOI: 10.1002/adem.202300104
Google Scholar
[2]
F. Bayock, P. Kah, M. Belinga, P. Layus, Effect of Heat Input and Undermatched Filler Wire on the Microstructure and Mechanical Properties of Dissimilar S700MC/S960QC High-Strength Steels. Metals, 9 883 (2019) 1-20.
DOI: 10.3390/met9080883
Google Scholar
[3]
K.S. Patel, N. Trivedi, D.B. Shah, S.J. Joshi, Prediction of tensile strength using machine learning algorithms in fused deposition modeling. Proc. Inst. Mech. Eng. Part E 2024, in press.
Google Scholar
[4]
I. Owunna and A. E. IKPE, Modelling and prediction of the mechanical properties of TIG welded joint for AISI 4130 low carbon steel plates using artificial neural network (ANN) Approach, Nigerian J. of Tech. (NIJOTECH) 38 (2019) 201-222.
DOI: 10.4314/njt.v38i1.16
Google Scholar
[5]
N.D. Ghetiya and K.M. Patel, Tensile strength prediction of friction stir welded aluminum alloy using artificial neural network. Department of Mechanical Engineering, Institute of Technology, Nirma University, Ahmedabad 382481, India, 2014.
DOI: 10.1016/j.protcy.2014.08.036
Google Scholar
[6]
L. Alberto Ciro De Filippis, L. Maria Serio, F. Facchini, G. Mummolo, A. Domenico, Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network, Department of Mechanics Mathematics and Management (DMMM), Polytechnic of Bari, Bari 70126, Italy, 2016.
DOI: 10.3390/ma9110915
Google Scholar
[7]
R. Ajith Raj and M. Anand, Modeling and Prediction of Mechanical Strength in Electron Beam Welded Dissimilar Metal Joints of Stainless Steel 304 and Copper Using Grey Relation Analysis. Inter. J. of Eng. and Tech. 7 (2024) 198-201.
DOI: 10.14419/ijet.v7i3.6.14969
Google Scholar
[8]
A. Mishra, Artificial Intelligence Algorithms for the Analysis of Mechanical Property of Friction Stir Welded Joints by using Python Programming, Weld. Tech. Review, 92 (2020) 7-16.
DOI: 10.26628/wtr.v92i6.1120
Google Scholar
[9]
F. Bayock, M. Kesse, M. Yebga, E. Ndjem, R. Nlend, Finite Element Simulation and Experimental Analysis of the Thermo-Mechanical Properties of Dissimilar S275 and 316L Austenite Stainless Steels using the RFW Process, Eng. Tech. and App. Sci. Res. 14 (2024) 18718.
DOI: 10.48084/etasr.8766
Google Scholar
[10]
J. Woo Moon, S. Kwon Jung, Development of a thermal control algorithm using artificial neural network models for improved thermal comfort and energy efficiency in accommodation buildings, Appl. Thermal Eng. 103 (2016) 1135-1144.
DOI: 10.1016/j.applthermaleng.2016.05.002
Google Scholar
[11]
Gyasi, E. A., Kah, P., Wu, H., Kesse M. A. Modelling of an artificial intelligence system to predict structural integrity in robotic GMAW of UHSS fillet welded joints", International Journal of Adv. Manuf. Tech. 93 (2017) 1139‑1155.
DOI: 10.1007/s00170-017-0554-0
Google Scholar
[12]
R. Mahadevan, A. Jagan, L. Pavithran, A. Shrivastava, S. Kumaran, Intelligent welding by using machine learning technique, Mater. Today Proc. 46 (2021) 7402-7410.
DOI: 10.1016/j.matpr.2020.12.1149
Google Scholar
[13]
D. Palanisamy, A. Devaraju, M. Natarajan, T, Pasupuleti, Application of hybrid ANFIS Tool for laser beam welding of Inconel 625 Alloy, Diffusion Found. And Mater. Appl. 34 (2023) 27-40.
DOI: 10.4028/p-l3b5ow
Google Scholar
[14]
M. Alhassan, Y. Bashiru, Carbon Equivalent Fundamentals in Evaluating the Weldability of Micro alloy and Low Alloy Steels, World J. of Eng. and Tech. 9 (2021) 782-792.
DOI: 10.4236/wjet.2021.94054
Google Scholar
[15]
S.O. Sada, S.C. Ikpeseni, Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance, Heliyon, 7 (2021) e06136.
DOI: 10.1016/j.heliyon.2021.e06136
Google Scholar
[16]
G. Elatharasan et V. S. S. Kumar, An Experimental Analysis and Optimization of Process Parameter on Friction Stir Welding of AA 6061-T6 Aluminum Alloy using RSM, Proc. Eng., vol. 64 (2013) 1227‑1234.
DOI: 10.1016/j.proeng.2013.09.202
Google Scholar
[17]
S. Gupta, K. Pandey, et R. Kumar, Artificial intelligence-based modelling and multi-objective optimization of friction stir welding of dissimilar AA5083-O and AA6063-T6 aluminum alloys, Proceedings of the Institution of Mechanical Engineers, Part L: J. of Mater.: Design and Appl. 232 (2016) 273-286.
DOI: 10.1177/1464420715627293
Google Scholar
[18]
C. Payares-Asprino, Prediction of Mechanical Properties as a Function of Welding Variables in Robotic Gas Metal Arc Welding of Duplex Stainless Steels SAF 2205 Welds Through Artificial Neural Networks, Adv. in Mater. Sci. 21 (2021).
DOI: 10.2478/adms-2021-0019
Google Scholar
[19]
O. S. Odebiyi, S. M. Adedayo, L. A. Tunji, et M. O. Onuorah, A review of weldability of carbon steel in arc-based welding processes, Cogent Engineering, 6 (2019) 1609180.
DOI: 10.1080/23311916.2019.1609180
Google Scholar
[20]
A. Azizi, A. Vatankhah Barenji, R. Barenji, et M. Hashemipour, Modeling Mechanical Properties of FSW Thick Pure Copper Plates and Optimizing It Utilizing Artificial Intelligence Techniques, Inter. J. of Sensor Netw. and Data Commun. 5 (2016) 1000142.
DOI: 10.4172/2090-4886.1000142
Google Scholar
[21]
R. Rajamanickam, P. Giridharan, et K. B. Senthil, « Predicting the tensile strength of friction stir welded dissimilar aluminum alloy using ANN », Inter. J. of Civil Eng. and Tech. 8 (2017) 345‑353.
Google Scholar
[22]
A. Mishra et T. Pathak, Estimation of Grain Size Distribution of Friction Stir Welded Joint by using Machine Learning Approach, ADCAIJ: Adv. in Distributed Computing and Art. Int. J. 10 (2020) 99‑110.
DOI: 10.14201/adcaij202110199110
Google Scholar
[23]
L. De Filippis, L. Serio, F. Facchini, G. Mummolo, et L. Antonio Domenico, Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network, Mater. 9 (2016), 915.
DOI: 10.3390/ma9110915
Google Scholar
[24]
N.D. Ghetiya et K.M. Patel, Prediction of Tensile Strength in Friction Stir Welded Aluminum Alloy Using Artificial Neural Network, Proc. Tech., 14 (2014), 274‑281.
DOI: 10.1016/j.protcy.2014.08.036
Google Scholar
[25]
S. A. Shahdad, J. F. McCabe, S. Bull, S. Rusby, et R. W. Wassell, Hardness measured with traditional Vickers and Martens hardness methods, Dental Materials, 23 (2007), 1079‑1085.
DOI: 10.1016/j.dental.2006.10.001
Google Scholar
[26]
H. Cao et M. D. Thouless, Tensile Tests of Ceramic-Matrix Composites: Theory and Experiment, J. of the American Ceramic Society, 73 (1990), 2091‑2094.
DOI: 10.1111/j.1151-2916.1990.tb05273.x
Google Scholar
[27]
A. Netto, F. Bayock, P. Kah, Optimization of GMAW Process Parameters in Ultra-High-Strength Steel Based on Prediction A - Metals 13 (2023) 1447.
DOI: 10.3390/met13081447
Google Scholar
[28]
S. Toorandaz, K. Taherkhani, F. Liravi, E. Toyserkani, A novel machine learning-based approach for in-situ surface roughness prediction in laser powder-bed fusion, Additive Manufacturing 91 (2024) 104354.
DOI: 10.1016/j.addma.2024.104354
Google Scholar
[29]
T. Wordofa, J. Perumalla, A. Sharma, an artificial intelligence system for quality level-based prediction of welding parameters for robotic gas metal arc welding, the inter. J. of Adv. Manuf. Tech. 232 (2024) 3293-3212.
DOI: 10.1007/s00170-024-13518-7
Google Scholar
[30]
O. Lofinmakin, S. Oro-oghene Sada, I. Emovon, D. Olusegun & S. Ayoola Oke, Prediction of optimal mild steel weld parameters using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique, Inter. J. of Adv. Manuf. Tech., 131 (2024) 1203–1210.
DOI: 10.1007/s00170-024-13079-9
Google Scholar
[31]
F. Bayock, R. Nlend, E. Mbou, M. Appiah, B. Kamdem, P. Kah, Development of an Artificial Intelligence-Based Algorithm for Predicting the Mechanical Properties of Weld Joints of Dissimilar S700MC-S960QC Steel Structures, Civil Eng. Infrast. J. xx,xx (2025) in press.
Google Scholar
[32]
Z. Biao, W. Baigang, X. Weihua, A. Ullah, T. Zhang, Wang H. Development of a machine learning model for prediction of continuous cooling transformation diagrams in welding heat-affected zone, J. Mater. Sci. 58 (2023) 4795-4808.
DOI: 10.1007/s10853-023-08322-9
Google Scholar
[33]
J. Kahnamouei, M. Moallem, Advancements in control systems and integration of artificial intelligence in welding robots: A review, Ocean Engineering 312 (2024) 119294
DOI: 10.1016/j.oceaneng.2024.119294
Google Scholar
[34]
P. Akbari, M. Zamani, A. Mostafaei, Machine learning prediction of mechanical properties in metal additive manufacturing, Additive Manufacturing, 91 (2024) 104320.
DOI: 10.1016/j.addma.2024.104320
Google Scholar
[35]
F. Yan, Y.-C. Chan, A. Saboo, J. Shah, G.B. Olson, W. Chen, Data-driven prediction of mechanical properties in support of rapid certification of additively manufactured alloys, CMES Comput. Model. Eng. Sci. 117 (2018) 343–366.
DOI: 10.31614/cmes.2018.04452
Google Scholar
[36]
Z. Xie, F. Chen, L. Wang, W. Ge, W. Yan, Data-driven prediction of keyhole features in metal additive manufacturing based on physics-based simulation, J. Intel. Manuf. 35 (2023) 1–14.
DOI: 10.1007/s10845-023-02157-6
Google Scholar