Orthogonal Simulation Test for Evaluating Fretting Wear in Low-Speed Diesel Engine Connecting Rods

Article Preview

Abstract:

Fretting wear primarily impacts the bushing of the con-rod, subsequently influencing the con-rod's overall performance. In this investigation, the contact interactions between the con-rod small end, the small end cover, and the bushing under conditions of utmost combustion pressure were investigated. This analysis included examining the contact pressure and friction stress distribution. Subsequently, an orthogonal simulation test was developed to further investigate these interactions. The study took into account the friction coefficient of the interface and the quantity of interference as test factors based on contact mechanics theory. The objective functions were the utmost friction stress and contact pressure, ascertained under conditions of peak combustion pressure. Based on the findings from this study, the contact pressure of the top portion of the bushing is lower than that of the bottom portion. The friction stress of the top portion of the bushing is larger than that of the bottom portion. The optimal values for the interference amount and friction coefficient are 0.11 and 0.15, respectively, which will result in the most favorable conditions for minimizing fretting wear in the bushing.

You might also be interested in these eBooks

Info:

Pages:

101-114

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Yin, R. Liu, R. Zhang, et al., A new tribo-dynamics model for engine connecting rod small- end bearing considering elastic deformation and thermal effects, Tribol. Int. 188 (2023) 108831.

DOI: 10.1016/j.triboint.2023.108831

Google Scholar

[2] W. M. K. Helal, W. Zhang, X. Li, G. Wang, Y. Su, G. Chen, Analysis of a low-speed diesel engine connecting rod based on orthogonal simulation test, J. Phys.: Conf. Ser. 2093 (2021) 012023

DOI: 10.1088/1742-6596/2093/1/012023

Google Scholar

[3] W. M. K. Helal, W. P. Zhang, X. B. Li, G. X. Wang, A study on the fatigue strength of a low-speed diesel engine connecting rod made of 42CrMoA, Int. J. Eng. Res. Afr. 49 (2020) 139–151

DOI: 10.4028/www.scientific.net/jera.49.139

Google Scholar

[4] D. Croccolo, M. De Agostinis, S. Fini, G. Olmi, L. Paiardini, F. Robusto, Tribological properties of connecting rod high strength screws improved by surface peening treatments, Metals 10 (2020) 344

DOI: 10.3390/met10030344

Google Scholar

[5] Q. Dou, H. Luo, Y. Song, Z. Zhang, J. Zhang, Failure analysis of diesel engine connecting rod Big-End bearing wear considering coupled clearance lubrication joints, Eng. Fail. Anal. 169 (2025) 109136

DOI: 10.1016/j.engfailanal.2024.109136

Google Scholar

[6] M. N. Ilman, R. A. Barizy, Failure analysis and fatigue performance evaluation of a failed connecting rod of reciprocating air compressor, Eng. Fail. Anal. 56 (2015) 142-149

DOI: 10.1016/j.engfailanal.2015.03.010

Google Scholar

[7] C. Juarez, F. Rumiche, A. Rozas, J. Cuisano, P. Lean, Failure analysis of a diesel generator connecting rod case study, Eng. Fail. Anal. 7 (2016) 24-31

DOI: 10.1016/j.csefa.2016.06.001

Google Scholar

[8] W. M. K. Helal, W. Zhang, X. Li, G. Wang, Y. Su, Wear analysis of a low-speed diesel engine connecting rod based on orthogonal simulation test, J. Phys.: Conf. Ser. 2093 (2021) 012014

DOI: 10.1088/1742-6596/2093/1/012014

Google Scholar

[9] A. Muhammad, M. A. H. Ali, I. H. Shanono, Design optimization of a diesel connecting rod, Materials Today: Proceedings 22 (2020) 1600–1609

DOI: 10.1016/j.matpr.2020.02.122

Google Scholar

[10] S. Seralathan, S. V. Mitnala, R. S. K. Reddy, I. G. Venkat, D. R. T. Reddy, V. Hariram, T. M. Premkumar, Stress analysis of the connecting rod of compression ignition engine, Materials Today: Proceedings

DOI: 10.1016/j.matpr.2020.06.137

Google Scholar

[11] S. Yadav, S. K. Gautam, R. Upadhyaya, N. K. Singh, K. K. Singh, A. Namdev, Die design optimization for connecting rod using simulation modeling and Taguchi methodology, Eng. Res. Express 6(3) (2024)

DOI: 10.1088/2631-8695/ad6d2b

Google Scholar

[12] H. Jia, S. Li, Finite element structural simulation of connecting rod, J. Phys.: Conf. Ser. 2468(1) (2023) 012068

DOI: 10.1088/1742-6596/2468/1/012068

Google Scholar

[13] F. Hu, Q. He, B. Fu, M. Zhao, M. Yang, Reliability analysis of diesel engine connecting rod threaded connection based on ANSYS, J. Phys.: Conf. Ser. 2459 (2023) 012095

DOI: 10.1088/1742-6596/2459/1/012095

Google Scholar

[14] P. S. Gorane, R. S. Fegade, N. S. Sampat, V. B. Roundal, G. D. Siraskar, P. S. Patil, S. Gadhave, V. K. Javanjal, Finite element analysis (FEA) of Swift's connecting rod considering "I" cross section, Panamerican Mathematical Journal 33(2) (2023)

DOI: 10.52783/pmj.v33.i2.872

Google Scholar

[15] S. Songklanakarin, S. Ali, Investigation of stresses at a critical location for shape optimization of connecting rod using finite element analysis, J. Sci. Technol. 45(2) (2023) 264-269.

Google Scholar

[16] P. S. Gorane, V. B. Roundal, Connecting rod design along with analysis: A review, J. Autom. Automob. Eng. 7(1) (2022) e-ISSN: 2582-3159.

Google Scholar

[17] J. Shu, X. Fu, A topology optimization design of compressor connecting rod, J. Phys.: Conf. Ser. 2383 (2022) 012022

DOI: 10.1088/1742-6596/2383/1/012022

Google Scholar

[18] S. Saxena, R. K. Ambikesh, Design and finite element analysis of connecting rod of different materials, AIP Conf. Proc. 2341 (2021) 020034

DOI: 10.1063/5.0049989

Google Scholar

[19] S. Saxena, R. K. Ambikesh, Design and finite element analysis of connecting rod of different materials, AIP Conf. Proc. 2341(1) (2021). Retrieved from

DOI: 10.1063/5.0049989

Google Scholar

[20] G. Shanmugasundar, M. Dharanidharan, D. Vishwa, A. S. Kumar, Design, analysis and topology optimization of connecting rod, Materials Today: Proceedings 46 (2021) 3430-3438. Retrieved from

DOI: 10.1016/j.matpr.2020.11.778

Google Scholar

[21] T. Sathish, S. D. Kumar, S. Karthick, Modelling and analysis of different connecting rod material through finite element route, Materials Today: Proceedings 21(1) (2020) 971-975. Retrieved from

DOI: 10.1016/j.matpr.2019.09.139

Google Scholar

[22] A. Muhammad, et al., Finite element analysis of a connecting rod in ANSYS: An overview, IOP Conf. Ser.: Mater. Sci. Eng. 736 (2020) 022119.

DOI: 10.1088/1757-899x/736/2/022119

Google Scholar

[23] P. Mishra, R. Singh, P. Pachorkar, R. Singh, A. K. Sharma, Y. S. Rajpoot, Design and static analysis of connecting rod of a petrol engine using FEA, in: Processing and Fabrication of Advanced Materials, vol. 1, pp.465-475, 2024

DOI: 10.1007/978-981-97-5959-0_31

Google Scholar

[24] F. H. Fu, H. Zhang, L. Zhang, P. Niu, X. Liu, O. Stelmakh, The loosening mechanism of tin-bronze bushing assembled by interference at connecting rod small end of heavy-duty diesel engines, Int. J. Engine Res. 0(0) (2024)

DOI: 10.1177/14680874241272922

Google Scholar

[25] W. Arso, M. N. C. Wan, A. F. M. Ayob, W. N. W. Mansor, Failure analysis of a connecting rod bearing of a diesel engine generator set, in: Exploring Diversity in Engineering and Technology for Knowledge and Innovation, pp.123-131, 2024

DOI: 10.1007/978-3-031-64330-9_10

Google Scholar

[26] F. Renso, S. G. Barbieri, V. Mangeruga, M. Giacopini, Finite element analysis of the influence of the assembly parameters on the fretting phenomena at the bearing/big end interface in high-performance connecting rods, Lubricants 11(9) (2023) 375

DOI: 10.3390/lubricants11090375

Google Scholar

[27] W. Wilarso, F. Azharul, A. Surya, A. Dharmanto, Failure bushing small end connecting rod diesel engine 3500 series, AIP Conf. Proc. 2702 (2023) 040015

DOI: 10.1063/5.0154252

Google Scholar

[28] W. Wilarso, C. W. M. Noor, A. F. M. Ayob, W. N. W. Mansor, Investigation and failure analysis of a diesel generator connecting rod, Mech. Eng. Soc. Ind. 2(2) (2022) 64–71

DOI: 10.31603/mesi.6624

Google Scholar

[29] Y. Wei, et al., Effect of different microstructures on the performance of air-cooled forging steel 46MnVS5 fracture splitting connecting rod, Materials Science Forum 941 (2018) 358-363. https://www.scientific.net/MSF.941.358

DOI: 10.4028/www.scientific.net/msf.941.358

Google Scholar

[30] Information on https://www.ansys.com

Google Scholar