[1]
United Nations about the sustainable development goals. https://www.un.org/sustainable development/sustainabl e-development-goals (2019).
Google Scholar
[2]
Armstrong, M., Armstrong, Water Stress Will Be Highest by 2040. Statista. htt ps://www.statista.com/chart/26140/w ater-stress-projections-global/. ASTM, 2013. Standard practice for the preparation of substitute ocean water. In: D 1141 – 98, West Conshohocken (PA, USA). (2023).
Google Scholar
[3]
BI S-456, In: Plain and Reinforced Concrete-Code of Practice, Bureau of Indian Standards. New Delhi, India (2000).
Google Scholar
[4]
BS-EN-1008, In: Mixing Water for Concrete. Specification for Sampling, Testing and Assessing the Suitability of Water, Including Water Recovered from Processes in the Concrete Industry, as Mixing Water for Concrete, British Standard, UK (2002).
DOI: 10.3403/02609198
Google Scholar
[5]
ASTM-C1602, Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete (West Conshohocken, PA), (2012).
Google Scholar
[6]
S.K. Kaushik, S. Islam, Suitability of sea water for mixing structural concrete exposed to a marine environment, Cem. Concr. Comp. 17.3 (1995)177-185.
DOI: 10.1016/0958-9465(95)00015-5
Google Scholar
[7]
S. Rathnarajan, J. N. Pacheco, F. Capucha, J.Valencia, M. Techman, P. Sikora, Seawater-mixed concretes containing supplementary cementitious materials: compressive strength, e-modulus, electrical resistivity, and life cycle assessment. Arch. Civ. Mech. Eng. 25(2025) 69.
DOI: 10.1007/s43452-025-01132-7
Google Scholar
[8]
L. Montanari, P. Suraneni, M. Tsui-Chang, M. Khatibmasjedi, U. Ebead, J.Weiss, A. Nanni, Hydration, pore solution, and porosity of cementitious pastes made with seawater, J. Mater. Civ. Eng. 31 (2019) 04019154.
DOI: 10.1061/(asce)mt.1943-5533.0002818
Google Scholar
[9]
A.Younis, U. Ebead, P. Suraneni, A. Nanni, Fresh and hardened properties of seawater-mixed concrete, Const. Buil. Mater. 190 (2018) 276–286.
DOI: 10.1016/j.conbuildmat.2018.09.126
Google Scholar
[10]
S. Rathnarajan, K. Cendrowski, D. Sibera, P. Sikora, Comprehensive evaluation of early-age hydration and compressive strength development in seawater-mixed binary and ternary cementitious systems. Arch. Civ. Mech. Eng. 24(2024) 121.
DOI: 10.1007/s43452-024-00932-7
Google Scholar
[11]
H. Li, N. Farzadnia, C. Shi, The role of seawater in interaction of slag and silica fume with cement in low water-to-binder ratio pastes at the early age of hydration, Constr. Buil. Mater. 185(2018) 508– 518.
DOI: 10.1016/j.conbuildmat.2018.07.091
Google Scholar
[12]
P. Tiwari, R. Chandak, R.K. Yadav, Effect of salt water on compressive strength of concrete, International Journal of Engineering Research and Applications, 4(2014) 38-42.
Google Scholar
[13]
R. L. Ige, Effect of Seawater Concentration on Compressive Strength of Concrete, Project Report, Department of Civil Engineering, University of Agriculture, Abeokuta, (2010).
Google Scholar
[14]
Q. Guo, L. Chen, H. Zhao, J. Admilson, W.Zhang, The effect of mixing and curing sea water on concrete strength at diferent ages. MATEC Web Conference. 142(2018) 02004.
DOI: 10.1051/matecconf/201814202004
Google Scholar
[15]
F. Bertola, D. Gastaldi, F. Canonico, Behavior of specialty binders mixed with seawater, Adv. Civ.Eng. Mater. 8(2019) 96–109.
DOI: 10.1520/acem20180107
Google Scholar
[16]
A.R. Kushnir, M.J. Heap, L. Griffiths, F.B. Wadsworth, A. Langella, P. Baud, T. Reuschlé, J.E. Kendrick, J.E.P. Utley, The fire resistance of high-strength concrete containing natural zeolites, Cem. Concr. Comp. 116(2021)103897.
DOI: 10.1016/j.cemconcomp.2020.103897
Google Scholar
[17]
A. Ababneh, F. Matalkah, Potential use of Jordanian volcanic tuffs as supplementary cementitious materials, Case. Stud. Constr. Mater. 8 (2018) 193-202.
DOI: 10.1016/j.cscm.2018.02.004
Google Scholar
[18]
K. Robalo, H. R Costa, do Carmo, E. Júlio, Enhanced mechanical and durability performances of low cement concrete with natural pozzolan addition, J. Adv. Concr.Tech. 19(2021) 519-535.
DOI: 10.3151/jact.19.519
Google Scholar
[19]
S. Salamatpoor, Y. Jafarian, A. Hajiannia, Physical and mechanical properties of sand stabilized by cement and natural zeolite, Europ. Phy. J. Plus, 133(2018) 205.
DOI: 10.1140/epjp/i2018-12016-0
Google Scholar
[20]
V. Swathi, S. S. Asadi, An influence of pozzolanic materials with hybrid fibers on structural performance of concrete: A review. Materials Today: Proceedings. 43 (2021), 1956-1959.
DOI: 10.1016/j.matpr.2020.11.260
Google Scholar
[21]
M. Çullu, H. Bolat, A. Vural, E.Tuncer, Investigation of pozzolanic activity of volcanic rocks from the Northeast of the Black Sea. Sci. Eng. Comp. Mater. 23.3 (2016) 315-323.
DOI: 10.1515/secm-2014-0092
Google Scholar
[22]
L.Turanli, B. Uzal, F. Bektas, Effect of large amounts of natural pozzolan addition on properties of blended cements, Cem. Concr. Res. 35(2005) 1106–1111.
DOI: 10.1016/j.cemconres.2004.07.022
Google Scholar
[23]
A. Belaid, S. Khaled, H. Brahim, K. Salim, S. Brahim, N. Mesrati, Effect of metakaolin as partially cement replacement on the compressive strength of standard mortars, Rev. Rom. Ing. Civ. 12(2021) 268-280.
Google Scholar
[24]
N. Garcia-Troncoso, B.Xu, W. Probst-Pesantez, Development of concrete incorporating recycled aggregates, hydrated lime and natural volcanic pozzolan, Infrastructures. 6(2021) 155.
DOI: 10.3390/infrastructures6110155
Google Scholar
[25]
S. Hammat, B. Menadi, S. Kenai, C. M. S. Thomas, Kirgiz, A. G. de Sousa Galdino, The effect of content and fineness of natural pozzolana on the rheological, mechanical, and durability properties of self-compacting mortar, J. Buil. Eng. 44 (2021) 103276.
DOI: 10.1016/j.jobe.2021.103276
Google Scholar
[26]
B. Masood, A. Elahi, S. Barbhuiya, B. Ali, Mechanical and durability performance of recycled aggregate concrete incorporating low calcium bentonite, Constr. Buil. Mater. 237 (2020) 117760.
DOI: 10.1016/j.conbuildmat.2019.117760
Google Scholar
[27]
P. Sikora, D. Lootens, M. Liard, Stephan, The effects of seawater and nanosilica on the performance of blended cements and composites, Appl. Nanosci. 10 (2020) 5009-5026.
DOI: 10.1007/s13204-020-01328-8
Google Scholar
[28]
M. Najimi, M. Jamshidi, A. Pourkhorshidi, Durability of concretes containing natural pozzolan, Proceedings of the Institution of Civ. Eng. Constr. Mater. 161(2008) 113-118.
DOI: 10.1680/coma.2008.161.3.113
Google Scholar
[29]
T. A. Fode, Y. A. C. Jande, T. Kivevele, Effect of natural pozzolana on physical and mechanical properties of concrete, Adv. Civ. Eng. 2024(2024) 3356641.
DOI: 10.1155/2024/3356641
Google Scholar
[30]
S. A. Mohamad, R. K. S. Al-Hamd, T. T. Khaled, Investigating the effect of elevated temperatures on the properties of mortar produced with volcanic ash, Innov. Infrastruct. Solut, 5(2020) 25.
DOI: 10.1007/s41062-020-0274-4
Google Scholar
[31]
S. Bechar, D. Zerrouki, Effect of natural pozzolan on the fresh and hardened cement slurry properties for cementing oil well, World. J. Eng. 15(2018) 513-519.
DOI: 10.1108/wje-10-2017-0337
Google Scholar
[32]
EN197-1, Cement, composition, specifications and conformity criteria for common cements', European committee for standardization (CEN), (2000).
Google Scholar
[33]
ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, (2022).
DOI: 10.1520/c0618-22
Google Scholar
[34]
EN 934-2, Admixtures for Concrete, mortar and grout-part 2: Concrete admixtures-definitions, requirements, conformity, marking and labeling', European committee for standardization (CEN), (2009).
DOI: 10.3403/02360220
Google Scholar
[35]
EN1015-3, Methods of test for mortar masonry, Part 3: Determination of consistence of fresh mortar (by flow table),(2004).
DOI: 10.3403/01541440u
Google Scholar
[36]
EN 1015-11 Methods of test for mortar for masonry - Part 11: determination of flexural and compressive strength of hardened mortar, (2019).
DOI: 10.3403/01905442
Google Scholar
[37]
EN 1015-18 Methods of test for mortar for masonry - Part 18: determination of water absorption coefficient due to capillary action of hardened mortar,(2003).
DOI: 10.3403/02720093u
Google Scholar
[38]
JCI-S-002, Standard test method for load-displacement curve of fiber reinforced concrete by use of notched beam, Japan Concrete Institute Standard, (2003).
Google Scholar
[39]
R.A. Razak, K. Ng. Yen,. M. M. Al Bakri Abdullah, Z. Yahya, R. Mohamed, K. Muthusamy, B. Jeż, Influence of Salinity of Mixing Water Towards Physical and Mechanical Properties of High Strength Concrete, Archives of Metallurgy and Materials. (2023)1041-1045.
DOI: 10.24425/amm.2023.145473
Google Scholar
[40]
X. Lyu, N. Robinson, M. Elchalakani, M.L. Johns, M. Dong, S. Nie, Sea Sand Seawater Geopolymer Concrete. J. Buil. Eng. 50 (2022)104141.
DOI: 10.1016/j.jobe.2022.104141
Google Scholar
[41]
U.Ebead, D. Lau, F. Lollini, A. Nanni, P. Suraneni, T. Yu, A Review of Recent Advances in the Science and Technology of Seawater-Mixed Concrete, Cem. Concr. Resear. 152 (2022).
DOI: 10.1016/j.cemconres.2021.106666
Google Scholar
[42]
A.Younis, U. Ebead, P. Suraneni, A. Nanni, Performance of seawater-mixed recycled-aggregate concrete. J. Mater. Civ. Eng. 32 (2020).
DOI: 10.1061/(asce)mt.1943-5533.0002999
Google Scholar
[43]
D.P. Bentz, F. Zunino, D. Lootens, Chemical vs. Physical Acceleration of Cement Hydration, Concr. Int. Des. Constr.38 (2016)17.
Google Scholar
[44]
M.Etxeberria, J.M. Fernandez, J. Limeira, Secondary aggregates and seawater employment for sustainable concrete dyke blocks production: case study. Constr. Buil. Mater. 113(2016) 586-595.
DOI: 10.1016/j.conbuildmat.2016.03.097
Google Scholar
[45]
J. Chakkamalayath A. Joseph, H. Al-Baghli, O. Hamadah, D. Dashti, N. Abdulmalek, Performance evaluation of self-compacting concrete containing volcanic ash and recycled coarse aggregates, Asian J. Civ.Eng. 21(2020) 815-827.
DOI: 10.1007/s42107-020-00242-2
Google Scholar
[46]
A.M Zeyad, Effect of harsh environment on cement mortar containing natural pozzolans, Case Stud. Constr.Mater. 20 (2024), e02808.
DOI: 10.1016/j.cscm.2023.e02808
Google Scholar
[47]
J. Wang, E. Liu, L. Li, Multiscale investigations on hydration mechanisms in seawater OPC paste. Constr. Buil. Mater. 191(2018) 891-903.
DOI: 10.1016/j.conbuildmat.2018.10.010
Google Scholar
[48]
S. K. Lee, Durability and fracture toughness of fly ash concrete in the marine environment, Florida Atlantic University, (1990).
Google Scholar
[49]
Z.Sheng, Y.Wang, D. Huang, A promising mortar produced with seawater and sea sand. Mater. 15(2022) 6123.
DOI: 10.3390/ma15176123
Google Scholar
[50]
E.P. Sumukh, B. Das, S. Barbhuiya, Synergy of hydration and microstructural properties of sustainable cement mortar supplemented with industrial by-products. Int. J. Civ. Eng. 22(2024) 1137-1158.
DOI: 10.1007/s40999-024-00950-9
Google Scholar
[51]
A.M. Zeyad, M. Shubaili, A. Abutaleb, Using volcanic pumice dust to produce high-strength self-curing concrete in hot weather regions. Case Stud. Constr. Mater. 18(2023) e01927.
DOI: 10.1016/j.cscm.2023.e01927
Google Scholar