Synergistic Effect of Seawater and Volcanic Pumice Powder on the Properties of Sustainable Cement Mortar

Article Preview

Abstract:

Water shortage is a major global issue affecting the construction industry. One possible solution is to use seawater instead of tap water in cement-based materials. However, this raises concerns about the impact on material properties. In addition, it is known that the use of volcanic pumice powder in cement mortar can improve its properties, but the combined effects of seawater and volcanic pumice powder have not been thoroughly investigated. This study aims to fill this gap by investigating the synergistic effects of seawater and volcanic pumice powder on the slump flow, compressive and flexural strengths, water absorption, and fracture toughness of cement mortar. The main variables in this study are the type of water (Mediterranean water and tap water) and the percentage of volcanic pumice powder (VPP). The volcanic pumice powder content is 0%, 10%, 20%, and 30%, replacing cement by mass. Based on investigation results, it was shown that the combination of seawater and volcanic pumice powder leads to less fluid and more viscous mortars compared to those made with tap water (TW). However, in the hardened state, seawater promoted the early precipitation of cement hydration, resulting in an increase in compressive strength from the second day until 28-days, along with an improvement in the transport properties of mortar at 28 days. Meanwhile, a noticeable decline in both strength and fracture toughness was recorded for ages more than 28 days and up to 90 days, compared to mortars cast and cured with tap water.

You might also be interested in these eBooks

Info:

Pages:

53-68

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] United Nations about the sustainable development goals. https://www.un.org/sustainable development/sustainabl e-development-goals (2019).

Google Scholar

[2] Armstrong, M., Armstrong, Water Stress Will Be Highest by 2040. Statista. htt ps://www.statista.com/chart/26140/w ater-stress-projections-global/. ASTM, 2013. Standard practice for the preparation of substitute ocean water. In: D 1141 – 98, West Conshohocken (PA, USA). (2023).

Google Scholar

[3] BI S-456, In: Plain and Reinforced Concrete-Code of Practice, Bureau of Indian Standards. New Delhi, India (2000).

Google Scholar

[4] BS-EN-1008, In: Mixing Water for Concrete. Specification for Sampling, Testing and Assessing the Suitability of Water, Including Water Recovered from Processes in the Concrete Industry, as Mixing Water for Concrete, British Standard, UK (2002).

DOI: 10.3403/02609198

Google Scholar

[5] ASTM-C1602, Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete (West Conshohocken, PA), (2012).

Google Scholar

[6] S.K. Kaushik, S. Islam, Suitability of sea water for mixing structural concrete exposed to a marine environment, Cem. Concr. Comp. 17.3 (1995)177-185.

DOI: 10.1016/0958-9465(95)00015-5

Google Scholar

[7] S. Rathnarajan, J. N. Pacheco, F. Capucha, J.Valencia, M. Techman, P. Sikora, Seawater-mixed concretes containing supplementary cementitious materials: compressive strength, e-modulus, electrical resistivity, and life cycle assessment. Arch. Civ. Mech. Eng. 25(2025) 69.

DOI: 10.1007/s43452-025-01132-7

Google Scholar

[8] L. Montanari, P. Suraneni, M. Tsui-Chang, M. Khatibmasjedi, U. Ebead, J.Weiss, A. Nanni, Hydration, pore solution, and porosity of cementitious pastes made with seawater, J. Mater. Civ. Eng. 31 (2019) 04019154.

DOI: 10.1061/(asce)mt.1943-5533.0002818

Google Scholar

[9] A.Younis, U. Ebead, P. Suraneni, A. Nanni, Fresh and hardened properties of seawater-mixed concrete, Const. Buil. Mater. 190 (2018) 276–286.

DOI: 10.1016/j.conbuildmat.2018.09.126

Google Scholar

[10] S. Rathnarajan, K. Cendrowski, D. Sibera, P. Sikora, Comprehensive evaluation of early-age hydration and compressive strength development in seawater-mixed binary and ternary cementitious systems. Arch. Civ. Mech. Eng. 24(2024) 121.

DOI: 10.1007/s43452-024-00932-7

Google Scholar

[11] H. Li, N. Farzadnia, C. Shi, The role of seawater in interaction of slag and silica fume with cement in low water-to-binder ratio pastes at the early age of hydration, Constr. Buil. Mater. 185(2018) 508– 518.

DOI: 10.1016/j.conbuildmat.2018.07.091

Google Scholar

[12] P. Tiwari, R. Chandak, R.K. Yadav, Effect of salt water on compressive strength of concrete, International Journal of Engineering Research and Applications, 4(2014) 38-42.

Google Scholar

[13] R. L. Ige, Effect of Seawater Concentration on Compressive Strength of Concrete, Project Report, Department of Civil Engineering, University of Agriculture, Abeokuta, (2010).

Google Scholar

[14] Q. Guo, L. Chen, H. Zhao, J. Admilson, W.Zhang, The effect of mixing and curing sea water on concrete strength at diferent ages. MATEC Web Conference. 142(2018) 02004.

DOI: 10.1051/matecconf/201814202004

Google Scholar

[15] F. Bertola, D. Gastaldi, F. Canonico, Behavior of specialty binders mixed with seawater, Adv. Civ.Eng. Mater. 8(2019) 96–109.

DOI: 10.1520/acem20180107

Google Scholar

[16] A.R. Kushnir, M.J. Heap, L. Griffiths, F.B. Wadsworth, A. Langella, P. Baud, T. Reuschlé, J.E. Kendrick, J.E.P. Utley, The fire resistance of high-strength concrete containing natural zeolites, Cem. Concr. Comp. 116(2021)103897.

DOI: 10.1016/j.cemconcomp.2020.103897

Google Scholar

[17] A. Ababneh, F. Matalkah, Potential use of Jordanian volcanic tuffs as supplementary cementitious materials, Case. Stud. Constr. Mater. 8 (2018) 193-202.

DOI: 10.1016/j.cscm.2018.02.004

Google Scholar

[18] K. Robalo, H. R Costa, do Carmo, E. Júlio, Enhanced mechanical and durability performances of low cement concrete with natural pozzolan addition, J. Adv. Concr.Tech. 19(2021) 519-535.

DOI: 10.3151/jact.19.519

Google Scholar

[19] S. Salamatpoor, Y. Jafarian, A. Hajiannia, Physical and mechanical properties of sand stabilized by cement and natural zeolite,  Europ. Phy. J. Plus, 133(2018) 205.

DOI: 10.1140/epjp/i2018-12016-0

Google Scholar

[20] V. Swathi, S. S. Asadi, An influence of pozzolanic materials with hybrid fibers on structural performance of concrete: A review. Materials Today: Proceedings. 43 (2021), 1956-1959.

DOI: 10.1016/j.matpr.2020.11.260

Google Scholar

[21] M. Çullu, H. Bolat, A. Vural, E.Tuncer, Investigation of pozzolanic activity of volcanic rocks from the Northeast of the Black Sea. Sci. Eng. Comp. Mater. 23.3 (2016) 315-323.

DOI: 10.1515/secm-2014-0092

Google Scholar

[22] L.Turanli, B. Uzal, F. Bektas, Effect of large amounts of natural pozzolan addition on properties of blended cements, Cem. Concr. Res. 35(2005) 1106–1111.

DOI: 10.1016/j.cemconres.2004.07.022

Google Scholar

[23] A. Belaid, S. Khaled, H. Brahim, K. Salim, S. Brahim, N. Mesrati, Effect of metakaolin as partially cement replacement on the compressive strength of standard mortars, Rev. Rom. Ing. Civ. 12(2021) 268-280.

Google Scholar

[24] N. Garcia-Troncoso, B.Xu, W. Probst-Pesantez, Development of concrete incorporating recycled aggregates, hydrated lime and natural volcanic pozzolan, Infrastructures. 6(2021) 155.

DOI: 10.3390/infrastructures6110155

Google Scholar

[25] S. Hammat, B. Menadi, S. Kenai, C. M. S. Thomas, Kirgiz, A. G. de Sousa Galdino, The effect of content and fineness of natural pozzolana on the rheological, mechanical, and durability properties of self-compacting mortar, J. Buil. Eng. 44 (2021) 103276.

DOI: 10.1016/j.jobe.2021.103276

Google Scholar

[26] B. Masood, A. Elahi, S. Barbhuiya, B. Ali, Mechanical and durability performance of recycled aggregate concrete incorporating low calcium bentonite, Constr. Buil. Mater. 237 (2020) 117760.

DOI: 10.1016/j.conbuildmat.2019.117760

Google Scholar

[27] P. Sikora, D. Lootens, M. Liard, Stephan, The effects of seawater and nanosilica on the performance of blended cements and composites, Appl. Nanosci. 10 (2020) 5009-5026.

DOI: 10.1007/s13204-020-01328-8

Google Scholar

[28] M. Najimi, M. Jamshidi, A. Pourkhorshidi, Durability of concretes containing natural pozzolan, Proceedings of the Institution of Civ. Eng. Constr. Mater. 161(2008) 113-118.

DOI: 10.1680/coma.2008.161.3.113

Google Scholar

[29] T. A. Fode, Y. A. C. Jande, T. Kivevele, Effect of natural pozzolana on physical and mechanical properties of concrete, Adv. Civ. Eng. 2024(2024) 3356641.

DOI: 10.1155/2024/3356641

Google Scholar

[30] S. A. Mohamad, R. K. S. Al-Hamd, T. T. Khaled, Investigating the effect of elevated temperatures on the properties of mortar produced with volcanic ash, Innov. Infrastruct. Solut, 5(2020) 25.

DOI: 10.1007/s41062-020-0274-4

Google Scholar

[31] S. Bechar, D. Zerrouki, Effect of natural pozzolan on the fresh and hardened cement slurry properties for cementing oil well, World. J. Eng. 15(2018) 513-519.

DOI: 10.1108/wje-10-2017-0337

Google Scholar

[32] EN197-1, Cement, composition, specifications and conformity criteria for common cements', European committee for standardization (CEN), (2000).

Google Scholar

[33] ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, (2022).

DOI: 10.1520/c0618-22

Google Scholar

[34] EN 934-2, Admixtures for Concrete, mortar and grout-part 2: Concrete admixtures-definitions, requirements, conformity, marking and labeling', European committee for standardization (CEN), (2009).

DOI: 10.3403/02360220

Google Scholar

[35] EN1015-3, Methods of test for mortar masonry, Part 3: Determination of consistence of fresh mortar (by flow table),(2004).

DOI: 10.3403/01541440u

Google Scholar

[36] EN 1015-11 Methods of test for mortar for masonry - Part 11: determination of flexural and compressive strength of hardened mortar, (2019).

DOI: 10.3403/01905442

Google Scholar

[37] EN 1015-18 Methods of test for mortar for masonry - Part 18: determination of water absorption coefficient due to capillary action of hardened mortar,(2003).

DOI: 10.3403/02720093u

Google Scholar

[38] JCI-S-002, Standard test method for load-displacement curve of fiber reinforced concrete by use of notched beam, Japan Concrete Institute Standard, (2003).

Google Scholar

[39] R.A. Razak, K. Ng. Yen,. M. M. Al Bakri Abdullah, Z. Yahya, R. Mohamed, K. Muthusamy, B. Jeż, Influence of Salinity of Mixing Water Towards Physical and Mechanical Properties of High Strength Concrete, Archives of Metallurgy and Materials. (2023)1041-1045.

DOI: 10.24425/amm.2023.145473

Google Scholar

[40] X. Lyu, N. Robinson, M. Elchalakani, M.L. Johns, M. Dong, S. Nie, Sea Sand Seawater Geopolymer Concrete. J. Buil. Eng. 50 (2022)104141.

DOI: 10.1016/j.jobe.2022.104141

Google Scholar

[41] U.Ebead, D. Lau, F. Lollini, A. Nanni, P. Suraneni, T. Yu, A Review of Recent Advances in the Science and Technology of Seawater-Mixed Concrete, Cem. Concr. Resear. 152 (2022).

DOI: 10.1016/j.cemconres.2021.106666

Google Scholar

[42] A.Younis, U. Ebead, P. Suraneni, A. Nanni, Performance of seawater-mixed recycled-aggregate concrete. J. Mater. Civ. Eng. 32 (2020).

DOI: 10.1061/(asce)mt.1943-5533.0002999

Google Scholar

[43] D.P. Bentz, F. Zunino, D. Lootens, Chemical vs. Physical Acceleration of Cement Hydration, Concr. Int. Des. Constr.38 (2016)17.

Google Scholar

[44] M.Etxeberria, J.M. Fernandez, J. Limeira, Secondary aggregates and seawater employment for sustainable concrete dyke blocks production: case study. Constr. Buil. Mater. 113(2016) 586-595.

DOI: 10.1016/j.conbuildmat.2016.03.097

Google Scholar

[45] J. Chakkamalayath A. Joseph, H. Al-Baghli, O. Hamadah, D. Dashti, N. Abdulmalek, Performance evaluation of self-compacting concrete containing volcanic ash and recycled coarse aggregates, Asian J. Civ.Eng. 21(2020) 815-827.

DOI: 10.1007/s42107-020-00242-2

Google Scholar

[46] A.M Zeyad, Effect of harsh environment on cement mortar containing natural pozzolans, Case Stud. Constr.Mater. 20 (2024), e02808.

DOI: 10.1016/j.cscm.2023.e02808

Google Scholar

[47] J. Wang, E. Liu, L. Li, Multiscale investigations on hydration mechanisms in seawater OPC paste. Constr. Buil. Mater. 191(2018) 891-903.

DOI: 10.1016/j.conbuildmat.2018.10.010

Google Scholar

[48] S. K. Lee, Durability and fracture toughness of fly ash concrete in the marine environment, Florida Atlantic University, (1990).

Google Scholar

[49] Z.Sheng, Y.Wang, D. Huang, A promising mortar produced with seawater and sea sand. Mater. 15(2022) 6123.

DOI: 10.3390/ma15176123

Google Scholar

[50] E.P. Sumukh, B. Das, S. Barbhuiya, Synergy of hydration and microstructural properties of sustainable cement mortar supplemented with industrial by-products. Int. J. Civ. Eng. 22(2024) 1137-1158.

DOI: 10.1007/s40999-024-00950-9

Google Scholar

[51] A.M. Zeyad, M. Shubaili, A. Abutaleb, Using volcanic pumice dust to produce high-strength self-curing concrete in hot weather regions. Case Stud. Constr. Mater. 18(2023) e01927.

DOI: 10.1016/j.cscm.2023.e01927

Google Scholar