Preparation of Single-Crystal BiOCl Nanorods via Surfactant Soft-Template Inducing Growth

Article Preview

Abstract:

Nanorods of a compound semiconductor, BiOCl, have been prepared from BiCl3 solutions containing a nonionic surfactant, t-octyl-(OCH2CH2)xOH, x=9, 10 (Triton X-100). Powder X-ray diffraction (XRD) pattern indicated that the product was pure tetragonal phase bismoclite (BiOCl). The product was also characterized by the techniques of scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscope (TEM). The as-obtained BiOCl nanorods possess mean diameters less than 40nm and lengths ranging in 160-400nm. Selected area electron diffraction (SAED) pattern showed the single-crystal nature of as-prepared BiOCl nanorods. The growth mechanism of BiOCl nanorods has also been proposed.

You might also be interested in these eBooks

Info:

Pages:

79-82

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Mitsunori Yada, Masami Mihara, Shingi Mouri, Masako Kuroki, and Tsuyoshi Kijima: Adv. Mater. Vol. 14 (2002), p.309.

Google Scholar

[2] Kai-bin Tang, Yi-tai Qian, Jing-hui Zeng, and Xiao-gang Yang: Adv. Mater. Vol. 15 (2003), p.448.

Google Scholar

[3] Xiaolei Liu, Chao Li, Song Han, Jie Han, and Chongwu Zhou: Appl. Phys. Lett. Vol. 82 (2003), p. (1950).

Google Scholar

[4] Xu Xiang, Chuanbao Cao, Hesun Zhu: Solid State Communic. Vol. 126 (2003), p.315.

Google Scholar

[5] Nicola Pinna, Ute Wild, Joachim Urban, and Robert Schlogl: Adv. Mater. Vol. 15 (2003), p.329.

Google Scholar

[6] C. N. R. Rao, A. Govindaraj, F. Leonard Deepak, N. A. Gunari, and Manashi Nath: Appl. Phys. Lett. Vol. 78 (2001), p.1853.

Google Scholar

[7] Satishkumar, B.C. , Govindaraj, A., Vogl, Erasmus M., Basumallick, Lipika, Rao, C.N.R. : J. Mate. Res., Vol. 12 (1997), p.604.

Google Scholar

[8] Bao, J. , Tie, C., Xu, Z., Zhou, Q., Shen, D., Ma, Q. : Adv. Mater., Vol. 13 ( 2001), p.1631.

Google Scholar

[9] Sichu Li, Vijay T. John, Glen C. Irvin, Blake Simmons, Gary L. McPherson, Weillie Zhou: J. Appl. Phys., Vol. 87 (2000), p.6211.

Google Scholar

[10] Shenton, W, Douglas, T, Young, M., Stubbs, G., Mann, S. : Adv. Mater., Vol. 11 (1999), p.253.

Google Scholar

[11] Wong, Kim K.W. , Mayes, Eric L. : Materials Research Society Symposium - Proceedings, Vol. 737 (2003), p.201.

Google Scholar

[12] Harada, Makoto , Adachi, Motonari : Adv. Mater., Vol. 12( 2000), p.839.

Google Scholar

[13] Norihito Kijima, Koichi Matano, Masao Saito, et al. : Appl. Catal. A Vol. 206(2001), p.237.

Google Scholar

[14] R. Nitsche and W. J. Merz: J. Phys. Chem. Solids Vol. 13 (1960), p.154.

Google Scholar

[15] R. Ganesha, D. Arivuoli and P. Ramasamy: J. Cryst. Growth Vol. 128(1993), p.1081.

Google Scholar

[16] M. V. Shtilikha and D. V. Chepur: Soviet Phys. Semicond. Vol. 16 (1972), p.962.

Google Scholar

[17] C.T. Au, H. He, S.Y. Lai, C.F. Ng: Appl. Catal. A Vol. 159 (1997), p.133.

Google Scholar

[18] T. M. Dellinger and P. V. Brann: Scripta Mater. Vol. 44 (2001), p.1893.

Google Scholar

[19] Wen-Jun Li, Er-Wei Shi, Wei-Zhuo Zhong, Zhi-Wen Yin: J. Cryst. Growth, Vol. 203 (1999), p.186.

Google Scholar