[1]
B. Das, M. Mandal, A. Upadhyay, P. Chattopadhyay, and N. Karak, "Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants," Biomed. Mater., vol. 8, no. 3, p.035003, Mar. 2013.
DOI: 10.1088/1748-6041/8/3/035003
Google Scholar
[2]
M. R. Ghazanfari, M. Kashefi, S. F. Shams, and M. R. Jaafari, "Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications," Biochemistry Research International, vol. 2016, p.1–32, 2016.
DOI: 10.1155/2016/7840161
Google Scholar
[3]
L. S. Ganapathe, M. A. Mohamed, R. Mohamad Yunus, and D. D. Berhanuddin, "Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation," Magnetochemistry, vol. 6, no. 4, p.68, Dec. 2020.
DOI: 10.3390/magnetochemistry6040068
Google Scholar
[4]
G. Shi, B. Sun, Z. Jin, J. Liu, and M. Li, "Synthesis of SiO2/Fe3O4 nanomaterial and its application as cataluminescence gas sensor material for ether," Sensors and Actuators B: Chemical, vol. 171–172, p.699–704, Aug. 2012.
DOI: 10.1016/j.snb.2012.05.059
Google Scholar
[5]
H. Hu, W. Lu, X. Liu, F. Meng, and J. Zhu, "A High-Response Electrochemical As(III) Sensor Using Fe3O4–rGO Nanocomposite Materials," Chemosensors, vol. 9, no. 6, p.150, Jun. 2021.
DOI: 10.3390/chemosensors9060150
Google Scholar
[6]
Y. Zhang et al., "Sandwich-Structured PVDF-Based Composite Incorporated with Hybrid Fe3 O4@BN Nanosheets for Excellent Dielectric Properties and Energy Storage Performance," J. Phys. Chem. C, vol. 122, no. 3, p.1500–1512, Jan. 2018.
DOI: 10.1021/acs.jpcc.7b10838
Google Scholar
[7]
B. Ballarin et al., "PANI/Au/Fe3O4 nanocomposite materials for high performance energy storage," Electrochimica Acta, vol. 322, p.134707, Nov. 2019.
DOI: 10.1016/j.electacta.2019.134707
Google Scholar
[8]
A. J. Khan et al., "Facile synthesis of a novel Fe3O4-rGO-MoO3 ternary nano-composite for high-performance hybrid energy storage applications," Ceramics International, vol. 46, no. 3, p.3124–3131, Feb. 2020.
DOI: 10.1016/j.ceramint.2019.10.015
Google Scholar
[9]
N. M. Chusna, S. Sunaryono, A. Taufiq, and N. A. N. N. Malek, "Magnetic properties of SA-Fe2.75Mn0.25O4/Ag ferrogels and its potential application as hyperthermia therapy material," presented at the International Conference on Life Sciences and Technology (ICoLiST 2020), Malang, Indonesia, 2021, p.030124.
DOI: 10.1063/5.0052542
Google Scholar
[10]
S. O. Hwang et al., "Synthesis of Vertically Aligned Manganese-Doped Fe3O4 Nanowire Arrays and Their Excellent Room-Temperature Gas Sensing Ability," J. Phys. Chem. C, vol. 112, no. 36, p.13911–13916, Sep. 2008.
DOI: 10.1021/jp802943z
Google Scholar
[11]
S. Kutluay, S. Horoz, Ö. Şahin, A. Ekinci, and M. Ş. Ece, "Highly improved solar cell efficiency of Mn‐doped amine groups‐functionalized magnetic Fe3O4@SiO2 nanomaterial," Int J Energy Res, vol. 45, no. 14, p.20176–20185, Nov. 2021.
DOI: 10.1002/er.7097
Google Scholar
[12]
M. H. Fekri, S. I. Mohamareh, M. Hosseini, and M. R. Mehr, "Modification of Activated Carbon (Prepared From Flaxseed) With Fe3O4, Its Application As Adsorbent And Antibacterial," In Review, preprint, Oct. 2021.
DOI: 10.21203/rs.3.rs-972925/v1
Google Scholar
[13]
P. Nazari, N. Askari, and S. Rahman Setayesh, "Oxidation-precipitation of magnetic Fe3O4/AC nanocomposite as a heterogeneous catalyst for electro-Fenton treatment," Chemical Engineering Communications, vol. 207, no. 5, p.665–675, May 2020, doi: 10.1080/00986445. 2019.1613233.
DOI: 10.1080/00986445.2019.1613233
Google Scholar
[14]
M. M. Abutalib and A. Rajeh, "Influence of Fe3O4 nanoparticles on the optical, magnetic and electrical properties of PMMA/PEO composites: Combined FT-IR/DFT for electrochemical applications," Journal of Organometallic Chemistry, vol. 920, p.121348, Aug. 2020.
DOI: 10.1016/j.jorganchem.2020.121348
Google Scholar
[15]
S. Sunaryono, N. M. Chusna, N. Mufti, M. Munasir, J. Rajagukguk, and A. Taufiq, "Investigation of magnetic properties and anti-microbial activity of Mn0.25Fe2.75O4/Ag composites," presented at the International Conference on Electromagnetism, Rock Magnetism and Magnetic Material (ICE-R3M) 2019, Malang, Indonesia, 2020, p.040001.
DOI: 10.1063/5.0015666
Google Scholar
[16]
T. J. Malek, S. H. Chaki, M. D. Chaudhary, J. P. Tailor, and M. P. Deshpande, "Effect of Mn Doping on Fe3O4 Nanoparticles Synthesized by Wet chemical Reduction Technique," Iranian (Iranica) Journal of Energy & Environment, vol. 9, no. 2, p.121–129, 2018.
DOI: 10.5829/ijee.2018.09.02.07
Google Scholar
[17]
A. Taufiq et al., "Dependence of PEO content in the preparation of Fe3O4/PEO/TMAH ferrofluids and their antibacterial activity," Journal of Polymer Research, vol. 27, no. 5, p.1–10, 2020.
DOI: 10.1007/s10965-020-02100-w
Google Scholar
[18]
D. F. Firdaus, M. Masrudin, D. A. Lestari, M. R. Arbi, and M. Chalid, "Structure and Compatibility Study of Modified Polyurethane/Fe3O4 Nanocomposite for Shape Memory Materials," Indones. J. Chem., vol. 15, no. 2, p.130–140, Jul. 2015.
DOI: 10.22146/ijc.21206
Google Scholar
[19]
A. Rajeh, M. A. Morsi, and I. S. Elashmawi, "Enhancement of spectroscopic, thermal, electrical and morphological properties of polyethylene oxide/carboxymethyl cellulose blends: Combined FT-IR/DFT," Vacuum, vol. 159, p.430–440, Jan. 2019.
DOI: 10.1016/j.vacuum.2018.10.066
Google Scholar
[20]
I. M. Deygen and E. V. Kudryashova, "New versatile approach for analysis of PEG content in conjugates and complexes with biomacromolecules based on FTIR spectroscopy," Colloids and Surfaces B: Biointerfaces, vol. 141, p.36–43, 2016.
DOI: 10.1016/j.colsurfb.2016.01.030
Google Scholar
[21]
A. Taufiq, N. Mufti, H. Susanto, E. G. R. Putra, and S. Soontaranon, "Contributions of TMAH Surfactant on Hierarchical Structures of PVA/Fe3O4–TMAH Ferrogels by Using SAXS Instrument," Journal of Inorganic and Organometallic Polymers and Materials, vol. 28, no. 6, p.2206–2212, 2018.
DOI: 10.1007/s10904-018-0939-z
Google Scholar
[22]
N. Miftachul Chusna, Sunaryono, S. Hidayat, N. Hidayat, N. Mufti, and A. Taufiq, "Identification of Nanostructural and Specific Absorption Rate (SAR) on Mn0.25Fe2.75O4/Ag Nanoparticle Composites," IOP Conf. Ser.: Earth Environ. Sci., vol. 276, p.012062, Jun. 2019.
DOI: 10.1088/1755-1315/276/1/012062
Google Scholar
[23]
L. B. de Mello, L. C. Varanda, F. A. Sigoli, and I. O. Mazali, "Co-precipitation synthesis of (Zn-Mn)-co-doped magnetite nanoparticles and their application in magnetic hyperthermia," Journal of Alloys and Compounds, vol. 779, p.698–705, Mar. 2019.
DOI: 10.1016/j.jallcom.2018.11.280
Google Scholar
[24]
J. Ruey-Shin, "Synthesis of magnetic Fe3O4/activated carbon nanocomposites with high surface area as recoverable adsorbents," Journal of the Taiwan Institute of Chemical Engineers, 2018.
Google Scholar
[25]
C. Quan, X. Jia, and N. Gao, "Nitrogen‐doping activated biomass carbon from tea seed shell for CO2 capture and supercapacitor," Int J Energy Res, vol. 44, no. 2, p.1218–1232, Feb. 2020.
DOI: 10.1002/er.5017
Google Scholar
[26]
J. Gurusiddappa, W. Madhuri, R. Padma Suvarna, and K. Priya Dasan, "Studies on the morphology and conductivity of PEO/LiClO4," Materials Today: Proceedings, vol. 3, no. 6, p.1451–1459, 2016.
DOI: 10.1016/j.matpr.2016.04.028
Google Scholar
[27]
E. Shobhana, "X-Ray Diffraction and UV-Visible Studies of PMMA Thin Films," 2012.
Google Scholar
[28]
B. Y. Yu and S.-Y. Kwak, "Assembly of magnetite nanocrystals into spherical mesoporous aggregates with a 3-D wormhole-like pore structure," J. Mater. Chem., vol. 20, no. 38, p.8320, 2010.
DOI: 10.1039/c0jm01274b
Google Scholar
[29]
P. N. Oliveira et al., "Magnetite nanoparticles with controlled sizes via thermal degradation of optimized PVA/Fe(III) complexes," Journal of Magnetism and Magnetic Materials, vol. 460, p.381–390, Aug. 2018.
DOI: 10.1016/j.jmmm.2018.04.005
Google Scholar