Crystal Structure, Morphology, and Magnetic Properties of Magnetic Nanocomposites with Iron Oxide Core and Zinc Oxide/Titanium Oxide Shell

Article Preview

Abstract:

In this work, we successfully synthesized a magnetic nanocomposite material (Fe3O4@ZnO/TiO2) with an iron oxide core and a zinc oxide/TiO2 shell (Fe3O4@ZnO/TiO2). The purpose of this study was to characterize the Crystal Structure, Morphology, and Magnetic Properties of Magnetic Nanocomposites with Iron Oxide Core and Zinc Oxide/Titanium Oxide Shell. The crystal structure of the sample was analyzed using X-ray diffraction, which identified three distinct phases: Fe3O4, ZnO, and TiO2. These phases respectively exhibited cubic spinel, hexagonal wurtzite, and tetragonal crystal structures. Transmission Electron Microscopy (TEM) characterization confirmed that the sample had a magnetic core–shell structure, with superparamagnetic properties and excellent stability owing to its spinel cubic structure, which is the primary magnetic material structure of the sample. The successful formation of the Fe3O4@ZnO/TiO2 nanocomposite represents a significant advancement in the synthesis of materials. This could serve as a basis for further investigations into magnetic materials, opening up possibilities for their application across diverse fields.

You might also be interested in these eBooks

Info:

Pages:

1-14

Citation:

Online since:

January 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Hapiz, L. A. Arni, T. Khadiran, Z. A. ALOthman, L. D. Wilson, and A. H. Jawad, "Magnetic grafted chitosan-salicylaldehyde via hydrothermal synthesis for acid red 88 dye removal: a statistical optimization," Biomass Conv. Bioref., Jun. 2023.

DOI: 10.1007/s13399-023-04352-0

Google Scholar

[2] N. Aslan, "Synthesis and Characterization of ZnO@Fe3O4 Composite Nanostructures by Using Hydrothermal Synthesis Method," Türk Doğa ve Fen Dergisi, vol. 11, no. 1, p.95–101, Mar. 2022.

DOI: 10.46810/tdfd.1011220

Google Scholar

[3] M. Baladi, M. Amiri, and M. Salavati-Niasari, "Green sol–gel auto-combustion synthesis, characterization and study of cytotoxicity and anticancer activity of ErFeO3/Fe3O4/rGO nanocomposite," Arabian Journal of Chemistry, vol. 16, no. 4, p.104575, Apr. 2023.

DOI: 10.1016/j.arabjc.2023.104575

Google Scholar

[4] M. M. Ba-Abbad, A. Benamour, D. Ewis, A. W. Mohammad, and E. Mahmoudi, "Synthesis of Fe3O4 Nanoparticles with Different Shapes Through a Co-Precipitation Method and Their Application," JOM, vol. 74, no. 9, p.3531–3539, Sep. 2022.

DOI: 10.1007/s11837-022-05380-3

Google Scholar

[5] S. Ahmadi, C.-H. Chia, S. Zakaria, K. Saeedfar, and N. Asim, "Synthesis of Fe3O4 nanocrystals using hydrothermal approach," Journal of Magnetism and Magnetic Materials, vol. 324, no. 24, p.4147–4150, Dec. 2012.

DOI: 10.1016/j.jmmm.2012.07.023

Google Scholar

[6] Z. I. Takai, M. K. Mustafa, S. Asman, and K. A. Sekak, "Preparation and Characterization of Magnetite (Fe3O4) nanoparticles By Sol-Gel Method," vol. 12, no. 1, 2019.

Google Scholar

[7] A. Radoń, D. Łukowiec, M. Kremzer, J. Mikuła, and P. Włodarczyk, "Electrical Conduction Mechanism and Dielectric Properties of Spherical Shaped Fe3O4 Nanoparticles Synthesized by Co-Precipitation Method," Materials, vol. 11, no. 5, p.735, May 2018.

DOI: 10.3390/ma11050735

Google Scholar

[8] M. Nikazar, M. Alizadeh, R. Lalavi, and M. H. Rostami, "The optimum conditions for synthesis of Fe3O4/ZnO core/shell magnetic nanoparticles for photodegradation of phenol," J Environ Health Sci Engineer, vol. 12, no. 1, p.21, Dec. 2014.

DOI: 10.1186/2052-336X-12-21

Google Scholar

[9] S. D. Kulkarni, S. M. Kumbar, S. G. Menon, K. S. Choudhari, and C. Santhosh, "Novel Magnetically Separable Fe3O4@ZnO Core–Shell Nanocomposite for UV and Visible Light Photocatalysis," adv sci lett, vol. 23, no. 3, p.1724–1729, Mar. 2017.

DOI: 10.1166/asl.2017.8484

Google Scholar

[10] K. K. Nishad, N. Tiwari, and R. K. Pandey, "Synthesis and Characterization of Ferromagnetic Fe3O4–ZnO Hybrid Core–Shell Nanoparticles," Journal of Elec Materi, vol. 47, no. 7, p.3440–3450, Jul. 2018.

DOI: 10.1007/s11664-018-6171-3

Google Scholar

[11] A. Aguinaco et al., "Fe3O4-TiO2 Thin Films in Solar Photocatalytic Processes," Materials, vol. 15, no. 19, p.6718, Sep. 2022.

DOI: 10.3390/ma15196718

Google Scholar

[12] M. Mohammadi-Alamuti, I. Shahabi-Ghahfarrokhi, and M. Shaterian, "Photo–degradable and recyclable starch/Fe3O4/TiO2 nanocomposites: feasibility of an approach to reduce the recycling labor cost in plastic waste management," Environ Sci Pollut Res, vol. 30, no. 2, p.2740–2753, Jan. 2023.

DOI: 10.1007/s11356-022-22049-1

Google Scholar

[13] H. Nurul Ulya, A. Taufiq, and Sunaryono, "Comparative Structural Properties of Nanosized ZnO/Fe3O4 Composites Prepared by Sonochemical and Sol-Gel Methods," IOP Conf. Ser.: Earth Environ. Sci., vol. 276, no. 1, p.012059, May 2019.

DOI: 10.1088/1755-1315/276/1/012059

Google Scholar

[14] M. Nadafan, M. Sabbaghan, P. Sofalgar, and J. Z. Anvari, "Comparative study of the third-order nonlinear optical properties of ZnO/Fe3O4 nanocomposites synthesized with or without Ionic Liquid," Optics & Laser Technology, vol. 131, p.106435, Nov. 2020.

DOI: 10.1016/j.optlastec.2020.106435

Google Scholar

[15] M. R. Fahlepy, V. A. Tiwow, and Subaer, "Characterization of magnetite (Fe3O4) minerals from natural iron sand of Bonto Kanang Village Takalar for ink powder (toner) application," J. Phys.: Conf. Ser., vol. 997, p.012036, Mar. 2018.

DOI: 10.1088/1742-6596/997/1/012036

Google Scholar

[16] Y. E. Gunanto, M. P. Izaak, E. Jobiliong, L. Cahyadi, and W. A. Adi, "High purity Fe3O4 from Local Iron Sand Extraction," J. Phys.: Conf. Ser., vol. 1011, p.012005, Apr. 2018.

DOI: 10.1088/1742-6596/1011/1/012005

Google Scholar

[17] K. P. Raj and K. Sadayandi, "Effect of temperature on structural, optical and photoluminescence studies on ZnO nanoparticles synthesized by the standard co-precipitation method," Physica B: Condensed Matter, vol. 487, p.1–7, Apr. 2016.

DOI: 10.1016/j.physb.2016.01.020

Google Scholar

[18] Y. Pan and M. Wen, "Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction," International Journal of Hydrogen Energy, vol. 43, no. 49, p.22055–22063, Dec. 2018.

DOI: 10.1016/j.ijhydene.2018.10.093

Google Scholar

[19] J. K. Dey et al., "Ferroelectric order associated with ordered occupancy at the octahedral site of the inverse spinel structure of multiferroic NiFe2O4," Phys. Rev. B, vol. 99, no. 14, p.144412, Apr. 2019.

DOI: 10.1103/PhysRevB.99.144412

Google Scholar

[20] J. Zhang et al., "Modulation of Inverse Spinel Fe3O4 by Phosphorus Doping as an Industrially Promising Electrocatalyst for Hydrogen Evolution," Adv. Mater., vol. 31, no. 52, p.1905107, Dec. 2019.

DOI: 10.1002/adma.201905107

Google Scholar

[21] R. Dudric et al., "Magnetite nanoparticles for medical applications," presented at the Tim 19 Physics Conference, Timisoara, Romania, 2020, p.030014.

DOI: 10.1063/5.0001198

Google Scholar

[22] J. Han et al., "Loading Fe3O4 nanoparticles on paper-derived carbon scaffold toward advanced lithium–sulfur batteries," Journal of Energy Chemistry, vol. 52, p.1–11, Jan. 2021.

DOI: 10.1016/j.jechem.2020.04.002

Google Scholar

[23] S. Thakur, M. Kaur, W. F. Lim, and M. Lal, "Fabrication and characterization of electrospun ZnO nanofibers; antimicrobial assessment," Materials Letters, vol. 264, p.127279, Apr. 2020.

DOI: 10.1016/j.matlet.2019.127279

Google Scholar

[24] R. Sharma, A. Sarkar, R. Jha, A. Kumar Sharma, and D. Sharma, "Sol‐gel–mediated synthesis of TiO 2 nanocrystals: Structural, optical, and electrochemical properties," Int J Appl Ceram Technol, vol. 17, no. 3, p.1400–1409, May 2020.

DOI: 10.1111/ijac.13439

Google Scholar

[25] H. Y. Playford, "Variations in the local structure of nano-sized anatase TiO2," Journal of Solid State Chemistry, vol. 288, p.121414, Aug. 2020.

DOI: 10.1016/j.jssc.2020.121414

Google Scholar

[26] T. L. Soundarya et al., "Ionic Liquid-Aided Synthesis of Anatase TiO2 Nanoparticles: Photocatalytic Water Splitting and Electrochemical Applications," Crystals, vol. 12, no. 8, p.1133, Aug. 2022.

DOI: 10.3390/cryst12081133

Google Scholar

[27] D. S. Winatapura, S. H. Dewi, and W. A. Adi, "Synthesis, Characterization, and Photocatalytic Activity of Fe3O4@ZnO Nanocomposite," IJTech, vol. 7, no. 3, p.408, Apr. 2016.

DOI: 10.14716/ijtech.v7i3.2952

Google Scholar

[28] A. Singh, V. Goyal, J. Singh, and M. Rawat, "Structural, morphological, optical and photocatalytic properties of green synthesized TiO2 NPs," Current Research in Green and Sustainable Chemistry, vol. 3, p.100033, Jun. 2020.

DOI: 10.1016/j.crgsc.2020.100033

Google Scholar

[29] D. Jiles, Introduction to Magnetism and Magnetic Materials. Boston, MA: Springer US, 1991.

DOI: 10.1007/978-1-4615-3868-4

Google Scholar

[30] M. Murariu et al., "Pathways to Green Perspectives: Production and Characterization of Polylactide (PLA) Nanocomposites Filled with Superparamagnetic Magnetite Nanoparticles," Materials, vol. 14, no. 18, p.5154, Sep. 2021.

DOI: 10.3390/ma14185154

Google Scholar

[31] S. Sunaryono, N. M. Chusna, N. Mufti, M. Munasir, J. Rajagukguk, and A. Taufiq, "Investigation of magnetic properties and anti-microbial activity of Mn0.25Fe2.75O4/Ag composites," presented at the International Conference on Electromagnetism, Rock Magnetism and Magnetic Material (ICE-R3M) 2019, Malang, Indonesia, 2020, p.040001.

DOI: 10.1063/5.0015666

Google Scholar

[32] F. El Bachraoui et al., "Unusual superparamagnetic behavior in bulk Ba0.198La0.784Ti0.096Fe0.8O3-δ," Materials Research Bulletin, vol. 137, p.111187, May 2021.

DOI: 10.1016/j.materresbull.2020.111187

Google Scholar

[33] J. Mosafer, K. Abnous, M. Tafaghodi, H. Jafarzadeh, and M. Ramezani, "Preparation and characterization of uniform-sized PLGA nanospheres encapsulated with oleic acid-coated magnetic-Fe3O4 nanoparticles for simultaneous diagnostic and therapeutic applications," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 514, p.146–154, Feb. 2017.

DOI: 10.1016/j.colsurfa.2016.11.056

Google Scholar

[34] Q. Li, C. W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, and K. Okuyama, "Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles," Sci Rep, vol. 7, no. 1, p.9894, Aug. 2017.

DOI: 10.1038/s41598-017-09897-5

Google Scholar

[35] X. Pan, A. Sun, Y. Han, W. Zhang, and X. Zhao, "Effects of different sintering temperature on structural and magnetic properties of Ni–Cu–Co ferrite nanoparticles," Mod. Phys. Lett. B, vol. 32, no. 27, p.1850321, Sep. 2018.

DOI: 10.1142/S0217984918503219

Google Scholar

[36] N. Suo, A. Sun, L. Yu, Z. Zuo, W. Zhang, and X. Zhao, "Effect performance of the nanomagnetic properties of Ni–Cu–Co ferrites by Al3+ ions adulteration," Mod. Phys. Lett. B, vol. 34, no. 05, p.2050059, Feb. 2020.

DOI: 10.1142/S0217984920500591

Google Scholar

[37] C. Anushree and J. Philip, "Efficient removal of methylene blue dye using cellulose capped Fe3O4 nanofluids prepared using oxidation-precipitation method," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 567, p.193–204, Apr. 2019.

DOI: 10.1016/j.colsurfa.2019.01.057

Google Scholar

[38] D. H. Han, J. P. Wang, and H. L. Luo, "Crystallite size effect on saturation magnetization of fine ferrimagnetic particles," Journal of Magnetism and Magnetic Materials, vol. 136, no. 1–2, p.176–182, Sep. 1994.

DOI: 10.1016/0304-8853(94)90462-6

Google Scholar

[39] L. Chen, S. Li, Y. Cui, Z. Xiong, H. Luo, and Y. Gao, "Manipulating the electronic and magnetic properties of ZnO monolayer by noble metal adsorption: A first-principles calculations," Applied Surface Science, vol. 479, p.440–448, Jun. 2019.

DOI: 10.1016/j.apsusc.2019.02.129

Google Scholar

[40] B. Anitha, M. A. Khadar, and A. Banerjee, "Paramagnetic behavior of Co doped TiO2 nanocrystals controlled by self-purification mechanism," Journal of Solid State Chemistry, vol. 239, p.237–245, Jul. 2016.

DOI: 10.1016/j.jssc.2016.04.035

Google Scholar

[41] Z. Lendzion-Bieluń, A. Wojciechowska, J. Grzechulska-Damszel, U. Narkiewicz, Z. Śniadecki, and B. Idzikowski, "Effective processes of phenol degradation on Fe3O4–TiO2 nanostructured magnetic photocatalyst," Journal of Physics and Chemistry of Solids, vol. 136, p.109178, Jan. 2020.

DOI: 10.1016/j.jpcs.2019.109178

Google Scholar

[42] F. Ghasemy-Piranloo, F. Bavarsiha, and S. Dadashian, "Tribological properties of core/shell Fe3O4/TiO2 composites as additives in base oil," J Sol-Gel Sci Technol, vol. 103, no. 3, p.908–920, Sep. 2022.

DOI: 10.1007/s10971-022-05864-3

Google Scholar

[43] M. Gonbadi, S. Sabbaghi, R. Saboori, A. Derakhshandeh, M. Narimani, and A. Z. Fatemi, "Sulfide adsorption by 'green synthesized Fe3O4@ZnO core/shell' nanoparticles from aqueous solution and industrial rich amine solution: kinetic and equilibrium study," Int. J. Environ. Sci. Technol., vol. 20, no. 3, p.3101–3120, Mar. 2023.

DOI: 10.1007/s13762-023-04755-6

Google Scholar

[44] X. Ji et al., "Synthesis of nano-Fe3O4/ZnO composites with enhanced antibacterial properties and plant growth promotion via one-pot reaction," Environ Sci Pollut Res, Jul. 2023.

DOI: 10.1007/s11356-023-28534-5

Google Scholar