[1]
T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, U. Gösele, Synthesis of vertical high-density epitaxial Si(100) nanowire arrays on a SI(100) substrate using an anodic aluminum oxide template, Advanced Materials. 19 (2007) 917–920.
DOI: 10.1002/adma.200700153
Google Scholar
[2]
A.M. Jani, I.M. Kempson, D. Losic, N.H. Voelcker, Dressing in layers: Layering surface functionalities in nanoporous aluminum oxide membranes, Angewandte Chemie. 122 (2010) 8105–8109.
DOI: 10.1002/ange.201002504
Google Scholar
[3]
H.J. Fan, W. Lee, R. Hauschild, M. Alexe, G. Le Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, U. Gösele, Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications, Small. 2 (2006) 561–568.
DOI: 10.1002/smll.200500331
Google Scholar
[4]
H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science. 268 (1995) 1466–1468.
DOI: 10.1126/science.268.5216.1466
Google Scholar
[5]
T. Kikuchi, D. Nakajima, J. Kawashima, S. Natsui, R.O. Suzuki, Fabrication of anodic porous alumina via anodizing in cyclic oxocarbon acids, Applied Surface Science. 313 (2014) 276–285.
DOI: 10.1016/j.apsusc.2014.05.204
Google Scholar
[6]
Z. Li, K. Huang, The effect of high-temperature annealing on optical properties of porous anodic alumina formed in oxalic acid, Luminescence. 22 (2007) 355–361.
DOI: 10.1002/bio.971
Google Scholar
[7]
H. Kaur, L. Sharma, M. Kushwaha, Effect of anionic surfactant on the growth of anodic nanoporous aluminum oxide, ECS Journal of Solid State Science and Technology. 5 (2016).
DOI: 10.1149/2.0151612jss
Google Scholar
[8]
X. Qin, J. Zhang, X. Meng, L. Wang, C. Deng, G. Ding, H. Zeng, X. Xu, Effect of ethanol on the fabrication of porous anodic alumina in sulfuric acid, Surface and Coatings Technology. 254 (2014) 398–401.
DOI: 10.1016/j.surfcoat.2014.06.050
Google Scholar
[9]
V. Vega, J. García, J.M. Montero-Moreno, B. Hernando, J. Bachmann, V.M. Prida, K. Nielsch, Unveiling the hard anodization regime of aluminum: Insight into nanopores self-organization and growth mechanism, ACS Applied Materials & Interfaces. 7 (2015) 28682–28692.
DOI: 10.1021/acsami.5b10712
Google Scholar
[10]
S.P. Kumar, P. Darshit, P. Ankita, D. Palak, P. Ram, P. Pradip, S. Kaliaperumal, Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect, African Journal of Biotechnology. 10 (2011) 8122–8130.
DOI: 10.5897/ajb11.394
Google Scholar
[11]
A.A. Akinsiku, J.A. Adekoya, E.O. Dare, Nicotiana tabacum mediated green synthesis of silver nanoparticles and ag-ni nanohybrid: Optical and antimicrobial efficiency, Indonesian Journal of Chemistry. 21 (2020) 179.
DOI: 10.22146/ijc.56072
Google Scholar
[12]
Davis, G.D., Fraunhofer, J.A., Krebs, L.A. & Dacres, C.M. The use of tobacco extracts as corrosion ihibitor. Corrosion 58, (2001).
Google Scholar
[13]
Olasehinde, E.F., Olusegun, S.J., Adesina, A.S., Omogbehin, S.A. & Momoh-Yahayah, H. Inhibitory action of nicotiana tabacum extracts on the corrosion of mild steel in HCl. Adsorption and Thermodynamics Study 11, 83-90 (2013).
Google Scholar
[14]
N.S. Abdelshafi, Electrochemical and Molecular Dynamic Investigation of some new pyrimidine derivatives as corrosion inhibitors for aluminium in acid medium, Protection of Metals and Physical Chemistry of Surfaces. 56 (2020) 1066–1080.
DOI: 10.1134/s2070205120050044
Google Scholar
[15]
Njokua, D. I., Chidiebere, M.A., Oguzie, K.L., Ogukwe, C.E., & Oguzie, E.E. Corrosion inhibition of mild steel in hydrochloric acid solution by the leaf extract of Nicotiana tabacum. Adv. Mater. Corros. 1, 54-61 (2013).
DOI: 10.4152/pea.201203189
Google Scholar
[16]
M.A. Quraishi, D.K. Yadav, I. Ahamad, Green approach to corrosion inhibition by black pepper extract in hydrochloric acid solution, The Open Corrosion Journal. 2 (2009) 56–60.
DOI: 10.2174/1876503300902010056
Google Scholar
[17]
O.O. Ajayi, O.A. Omotosho, K.O. Ajanaku, B.O. Olawore, Failure evaluation of aluminum alloy in 2 m hydrochloric acid in the presence of Cola acuminata, Environmental Research Journal. 5 (2011) 163–169.
DOI: 10.3923/erj.2011.163.169
Google Scholar
[18]
Abd El-Aziz Fouda, A.S. Fouda, El-Din Safaa, H. Etaiw, Mohamed Bakr, K. Shalabi, Ashwagandha extract as green sustainable corrosion inhibitor for aluminum in acidic solutions, Biointerface Research in Applied Chemistry. 11 (2020) 9719–9734.
DOI: 10.33263/briac112.97199734
Google Scholar
[19]
O.K. Abiola, N.C. Oforka, E.E. Ebenso, N.M. Nwinuka, Ecofriendly corrosion inhibitors: the inhibitive action of delonix regia extract for the corrosion of aluminium in acidic media, Anti-Corrosion Methods and Materials. 54 (2007) 219–224.
DOI: 10.1108/00035590710762357
Google Scholar
[20]
K. Kheawfu, A. Kaewpinta, W. Chanmahasathien, P. Rachtanapun, P. Jantrawut, Extraction of nicotine from tobacco leaves and development of fast dissolving nicotine extract film, Membranes. 11 (2021) 403.
DOI: 10.3390/membranes11060403
Google Scholar
[21]
G.D. Sulka, K.G. Parkoła, Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid, Electrochimica Acta. 52 (2007) 1880–1888.
DOI: 10.1016/j.electacta.2006.07.053
Google Scholar
[22]
W. Lee, R. Ji, U. Gösele, K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nature Materials. 5 (2006) 741–747.
DOI: 10.1038/nmat1717
Google Scholar
[23]
P. Skeldon, G.E. Thompson, S.J. Garcia-Vergara, L. Iglesias-Rubianes, C.E. Blanco-Pinzon, A tracer study of porous anodic alumina, Electrochemical and Solid-State Letters. 9 (2006).
DOI: 10.1149/1.2335938
Google Scholar
[24]
W.J. Stępniowski, M. Moneta, M. Norek, M. Michalska-Domańska, A. Scarpellini, M. Salerno, The influence of electrolyte composition on the growth of nanoporous anodic alumina, Electrochimica Acta. 211 (2016) 453–460.
DOI: 10.1016/j.electacta.2016.06.076
Google Scholar
[25]
Lakshmikandhan. Development of inhibition efficiency and adsorption behaviour of nicotine amide on aluminium corrosion in hydrochloric acid solution. Malaya Journal of Matematik 2, 2054-2059 (2020).
Google Scholar
[26]
Anusuya, Princy, V., Nagaveni, A., Suganthi, M., Poonkodi, K. & Jayanthi, E. Investigation of phytochemical constituents of tobacco (Nicotiana Tobacum L.) methanol extract. Mol Biol 10, 277 (2021).
Google Scholar
[27]
H. Kaur, L. Sharma, M. Kushwaha, Effect of anionic surfactant on the growth of anodic nanoporous aluminum oxide, ECS Journal of Solid State Science and Technology. 5 (2016).
DOI: 10.1149/2.0151612jss
Google Scholar
[28]
I. Mínguez-Bacho, S. Rodríguez-López, A. Climent, D. Fichou, M. Vázquez, M. Hernández-Vélez, Influence of sulfur incorporation into nanoporous anodic alumina on the volume expansion and self-ordering degree, The Journal of Physical Chemistry C. 119 (2015) 27392–27400.
DOI: 10.1021/acs.jpcc.5b06928
Google Scholar
[29]
L. Zaraska, G.D. Sulka, M. Jaskuła, Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time, Journal of Solid State Electrochemistry. 15 (2011) 2427–2436.
DOI: 10.1007/s10008-011-1471-z
Google Scholar
[30]
P.M. Clayton, C.A. Vas, T.T.T. Bui, A.F. Drake, K. McAdam, Spectroscopic studies on nicotine and Nornicotine in the UV region, Chirality. 25 (2013) 288–293.
DOI: 10.1002/chir.22141
Google Scholar
[31]
S. Ono, N. Masuko, The duplex structure of cell walls of porous anodic films formed on aluminum, Corrosion Science. 33 (1992) 503–507.
DOI: 10.1016/0010-938x(92)90078-h
Google Scholar
[32]
I.V. Roslyakov, A.P. Chumakov, A.A. Eliseev, A.P. Leontiev, O.V. Konovalov, K.S. Napolskii, Evolution of pore ordering during anodizing of aluminum single crystals: in situ small-angle X-ray scattering study, The Journal of Physical Chemistry C. 125 (2021) 9287–9295.
DOI: 10.1021/acs.jpcc.1c01482
Google Scholar
[33]
Jose Saniger, E. Mata-Zamora, Thermal evolution of porous anodic aluminas: A comparative study. Revista Mexicana de Física 51, 502-509 (2005).
Google Scholar
[34]
Z. Li, K. Huang, Optical properties of alumina membranes prepared by anodic oxidation process, Journal of Luminescence. 127 (2007) 435–440.
DOI: 10.1016/j.jlumin.2007.02.001
Google Scholar
[35]
J.N. Aman, J.K. Wied, Q. Alhusaini, S. Müller, K. Diehl, T. Staedler, H. Schönherr, X. Jiang, J. Schmedt auf der Günne, Thermal hardening and defects in anodic aluminum oxide obtained in oxalic acid: Implications for the template synthesis of low-dimensional nanostructures, ACS Applied Nano Materials. 2 (2019) 1986–1994.
DOI: 10.1021/acsanm.9b00018
Google Scholar
[36]
M.A. Trunov, M. Schoenitz, E.L. Dreizin, Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles, Combustion Theory and Modelling. 10 (2006) 603–623.
DOI: 10.1080/13647830600578506
Google Scholar
[37]
Persson, Kristin. Materials Data on Al (SG:225) by Materials Project. APL Materials 1, (2015).
Google Scholar
[38]
G. Beck, R. Bretzler, Regularity of nanopores in anodic alumina formed on orientated aluminium single-crystals, Materials Chemistry and Physics. 128 (2011) 383–387.
DOI: 10.1016/j.matchemphys.2011.03.022
Google Scholar
[39]
K.S. Napolskii, I.V. Roslyakov, A.Y. Romanchuk, O.O. Kapitanova, A.S. Mankevich, V.A. Lebedev, A. A. Eliseev, Origin of long-range orientational pore ordering in anodic films on aluminium, Journal of Materials Chemistry. 22 (2012) 11922.
DOI: 10.1039/c2jm31710a
Google Scholar
[40]
Y.N. Wen, J.M. Zhang, Surface energy calculation of the FCC metals by using the MAEAM, Solid State Communications. 144 (2007) 163–167.
DOI: 10.1016/j.ssc.2007.07.012
Google Scholar
[41]
J.M. Runge, Metallurgy basics for aluminum surfaces, The Metallurgy of Anodizing Aluminum. (2018) 191–248.
DOI: 10.1007/978-3-319-72177-4_4
Google Scholar