Single-Domain Hard Ferromagnetic M-SrFe Nanoparticles for Magnetic Data Storage

Article Preview

Abstract:

Single-domain M-type Strontium Ferrite nanoparticles are prepared by the co-precipitation method. The crystallite size of the M-SrFe Nps is 58.1 nm, as determined by the XRD pattern. The SEM micrographs reveal the hexagonal morphology. M-SrFe Nps is depicted in EDS analysis. According to VSM characterization, the sample is a hard magnetic material with high coercivity. With its outstanding magnetic characteristics, hexaferrite is typically employed in permanent magnetic materials and recording devices. The band gap energy is determined to be 1.95 eV from the UV-DRS reflectance data using the Kubelka-Munk plot. The absorbed wavelength with the highest intensity peak in PL analysis is 629.9 nm. The TG-DTA investigations support the remarkable thermal stability of M-SrFe Nps. The resistivity of the sample, 0.312 Ωm is calculated using the four-probe method.

You might also be interested in these eBooks

Info:

Pages:

31-41

Citation:

Online since:

January 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.H.J. Buschow, & F.R. de Boer, (2003), In Physics of Magnetism and Magnetic Materials.

Google Scholar

[2] Z.F. Zi, Y.P. Sun, X.B. Zhu, Z.R. Yang, J.M. Dai, & W.H. Song, (2008), Journal of Magnetism and Magnetic Materials, 320(21).

Google Scholar

[3] P. Sivakumar, L. Shani, Y. Yeshurun, A. Shaulov, & A. Gedanken, (2016), Journal of Materials Science: Materials in Electronics, 27(6).

Google Scholar

[4] M. Syazwan Mustaffa, R. Syahidah Azis, & S. Sulaiman, (2019), In Sol-Gel Method - Design and Synthesis of New Materials with Interesting Physical, Chemical and Biological Properties.

DOI: 10.5772/intechopen.80667

Google Scholar

[5] L. Canale, C. Girault-Di Bin, F. Cosset, A. Bessaudou, A. Celerier, J. Decossas, & J. Vareille, (2000), Pulsed laser deposition of lithium niobate thin films, Applications of Photonic Technology 4, 4087.

DOI: 10.1117/12.406370

Google Scholar

[6] L. Qiao, L. You, J. Zheng, L. Jiang, & J. Sheng, (2007), The magnetic properties of strontium hexaferrites with La-Cu substitution prepared by SHS method, Journal of Magnetism and Magnetic Materials, 318(1–2).

DOI: 10.1016/j.jmmm.2007.04.028

Google Scholar

[7] H. Kojima, (1982), Fundamental properties of hexagonal ferrites with magnetoplumbite structure, In Handbook of Ferromagnetic Materials (Vol. 3, Issue C).

DOI: 10.1016/s1574-9304(05)80091-4

Google Scholar

[8] S. Nakagawa, N. Matsushita, & M. Naoe, (2001), Journal of Magnetism and Magnetic Materials, 235(1–3).

Google Scholar

[9] H. Sozeri, F. Genc, M.A. Almessiere, S. Unver, A.D. Korkmaz, & A. Baykal, (2019), Journal of Alloys and Compounds, 779.

Google Scholar

[10] U. Ozgur, Y. Alivov, & H. Morkoc, (2009), In Journal of Materials Science: Materials in Electronics (Vol. 20, Issue 9).

Google Scholar

[11] O. Umit, A. Yahya, M. Hadis, Microwave Ferrites, Part 1: Fundamental Properties. J. Mater, Sci: Mater. Electron. 20, 789–834 (2009).

Google Scholar

[12] M.F. de Campos, D. Rodrigues, High technology applications of barium and strontium ferrite magnets, Mater. Sci. Forum 881 (2016) 134–139

DOI: 10.4028/www.scientific.net/MSF.881.134

Google Scholar

[13] X. Sui, B.K. Cheong, D.E. Laughlin, & M.H. Kryder, Growth of perpendicular barium hexaferrite thin film media on a Pt underlayer for high density perpendicular magnetic recording, J. Magn. Soc. Jpn, vol. 18, no. S1, p.319–322, 1994.

DOI: 10.3379/jmsjmag.18.s1_319

Google Scholar

[14] A. Morisako, M. Matsumoto, S. Takei, & T. Yamazaki, The effect of oxygen gas pressure on Ba–ferrite sputtered films for perpendicular magnetic recording media, IEEE Trans. Magn., vol. 33, no. 5, p.3100–3103, 1997.

DOI: 10.1109/20.92322

Google Scholar

[15] Sumran Bilgin, Sultan Ozturk, & Kursat Icin, Variation of magnetic properties in strontium magnet powders with Sr/Fe ratio, The International Journal of Materials and Engineering Technology (TIJMET) (2023) 6(1), http://dergipark.gov.tr/tijmet, ISSN: 2667-4033.

Google Scholar

[16] S.M. Alshehri, J. Ahmed, A.N. Alhabarah, T. Ahamad, T. Ahmad, Nitrogen-doped cobalt ferrite/carbon nanocomposites for supercapacitor applications, ChemElectroChem 4 (2017) 2952–2958.

DOI: 10.1002/celc.201700602

Google Scholar

[17] E.C. Stoner, & E.P. Wohlfarth, (1991), IEEE Transactions on Magnetics, 27(4).

Google Scholar

[18] C.H. Lin, Z.W. Shih, T.S. Chin, M.L. Wang, & Y.C. Yu, (1990) In IEEE TRANSACTIONS ON MAGNETICS (Vol. 26, Issue 1).

Google Scholar

[19] D. Micheli, A. Vricella, R. Pastore, & M. Marchetti, (2014), Carbon, 77.

Google Scholar

[20] A. Ghasemi, & A. Morisako, (2008), Journal of Magnetism and Magnetic Materials, 320(6).

Google Scholar

[21] S. Vadivelan, N. VictorJaya, Investigation of Structural, Thermal and Magnetic properties of Strontium substituted Barium Hexaferrite Synthesized via co-precipitation Method, International Journal of ChemTech Research, CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.12 pp.404-410, 2015.

Google Scholar

[22] N. Oh, S. Park, Y. Kim, H. Kwon, S. Kim, & K. Lim, (2020), Rare Metals, 39(1).

Google Scholar

[23] P. Jing, J. Du, J. Wang, J. Wei, L. Pan, J. Li, & Q. Liu, (2015), Scientific Reports, 5.

Google Scholar

[24] B. Ingham, & M. F. Toney, (2013), In Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties.

Google Scholar

[25] P. Kaur, S.K. Chawla, S.B. Narang, & K. Pubby, (2017), Journal of Superconductivity and Novel Magnetism, 30(3).

Google Scholar

[26] Y.J. Yang, & X.S. Liu, (2014), Materials Technology, 29(4).

Google Scholar

[27] R.S. Azis, S. Sulaiman, I.R. Ibrahim, A. Zakaria, J. Hassan, N.N.C. Muda, R. Nazlan, N.M. Saiden, Y.W. Fen, M.S. Mustaffa, & K.A. Matori, (2018), Nanoscale Research Letters, 13.

DOI: 10.1186/s11671-018-2562-x

Google Scholar

[29] T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, & M. Pacia, (2017), Nanoscale Research Letters, 12(1).

DOI: 10.1186/s11671-017-1899-x

Google Scholar

[30] P.E. Kazin, L.A. Trusov, D.D. Zaitsev, Y.D. Tretyakov, & M. Jansen, (2008), Journal of Magnetism and Magnetic Materials, 320(6).

DOI: 10.1016/j.jmmm.2007.10.020

Google Scholar

[31] J.A. Jimenez-Miramontes, M.J. Melendez-Zaragoza, J.M. Salinas-Gutierrez, A. Lopez-Ortiz, V. Collins-Martinez, S.C. Chihuahua, & C. Mexico, (n.d.), 24 Synthesis and evaluation of the phases SrFe 2 O 4 and SrFe 12 O 19 for Hydrogen production from photocathalytic water spliting.

Google Scholar

[32] N. Kumar, R.K. Singh, & H.K. Satyapal, (2020), Journal of Materials Science: Materials in Electronics

DOI: 10.1007/s10854-020-03454-z

Google Scholar

[33] R. Bhargava, P.K. Sharma, R.K. Dutta, S. Kumar, A.C. Pandey, N. Kumar, J. Mater. Chem. Phys 120 (2010) 393

Google Scholar

[34] K. Tanaka, S. Nakashima, K. Fujita, K. Hirao, J. Phys. Condens. Matter. 2003, 15, L469–L474.

DOI: 10.1088/0953-8984/15/30/101

Google Scholar

[35] C. Tapeinos, (2018), Magnetic Nanoparticles and Their Bioapplications In Smart Nanoparticles for Biomedicine.

DOI: 10.1016/b978-0-12-814156-4.00009-4

Google Scholar

[36] B. Lesniak, D. Koulialias, M. Charilaou, P.G. Weidler, J.M. Rhodes, J.E. Macdonald, & A.U. Gehring, (2021), Polycrystalline texture causes magnetic instability in greigite, Scientific Reports, 11(1).

DOI: 10.1038/s41598-020-80801-4

Google Scholar

[37] A.P. Roberts, L. Chang, C.J. Rowan, C.S. Horng, & F. Florindo, (2011), Reviews of Geophysics, 49(1).

Google Scholar

[38] A. Xia, C. Zuo, L. Chen, C. Jin, & Y. Lv, (2013), Journal of Magnetism and Magnetic Materials, 332

DOI: 10.1016/j.jmmm.2012.12.035

Google Scholar

[39] R.H. Arendt, (1973), Journal of Solid State Chemistry, 8(4).

Google Scholar

[40] M. Laayati, A. Hasnaoui, N. Abdallah, S. Oubaassine, L. Fkhar, O. Mounkachi, S. El Houssame, M. Ait Ali, & L. El Firdoussi, (2020), Journal of Chemistry, 2020.

DOI: 10.1155/2020/7960648

Google Scholar

[41] Vishal Kumar Chakradhary, M.J. Akhtar, highly coercive strontium hexaferrite nanodisks for microwave absorption and other industrial applications, Composites Part B 183 (2020) 107667.

DOI: 10.1016/j.compositesb.2019.107667

Google Scholar

[42] E.A. Nforna, J.N. Ghogomu, Structure and Magnetic Properties of Lanthanum Strontium Ferrites Nanopowders Synthesized by Thermal Decomposition of Mixed Metal Acetyl Acetonates, International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 IJERTV4IS070786 www.ijert.org, Vol. 4 Issue 07, July-2015.

Google Scholar

[43] S.E. Mousavi Ghahfarokhi, Z.A. Rostami, & I. Kazeminezhad, (2016), Journal of Magnetism and Magnetic Materials, 399.

Google Scholar

[44] S. Torkian, A. Ghasemi, R. ShojaRazavi, & M. Tavoosi, (2016), Journal of Superconductivity and Novel Magnetism, 29(6).

Google Scholar

[45] R.L. Palomino, A.M. Bolarin Miro, F.N. Tenorio, F. Sanchez De Jesus, C.A. Cortes Escobedo, & S. Ammar, Sonochemical assisted synthesis of SrFe12O19 nanoparticles, Ultrasonics Sonochemistry 29 (2016) 470–475

DOI: 10.1016/j.ultsonch.2015.10.023

Google Scholar

[46] V.K. Chakradhary, & M.J. Akhtar, (2020), Composites Part B: Engineering, 183.

Google Scholar

[47] E.A. Nforna, J. Ghogomu, J.N. Ghogomu, & J.N. Lambi, (n.d.), https://www.researchgate.net/publication/351132041

Google Scholar

[48] S.E. Mousavi Ghahfarokhi, E. Mohammadzadeh Shobegar, & M. Zargar Shoushtari, (2019), Journal of Superconductivity and Novel Magnetism, 32(4).

DOI: 10.1007/s10948-018-4799-0

Google Scholar

[49] W. Zhang, P. Li, Y. Wang, J. Guo, J. Li, S. Shan, S. Ma, & X. Suo, (2022), Magnetochemistry, 8(5).

Google Scholar