[1]
N. Munasir, R. P. Kusumawati, D. H. Kusumawati, Z. A. I. Supardi, A. Taufiq, dan Darminto, "Characterization of Fe3O4/rGO composites from natural sources: Application for dyes color degradation in aqueous solution," Int. J. Eng. Trans. A Basics, vol. 33, no. 1, p.18–27, 2020.
DOI: 10.5829/ije.2020.33.01a.03
Google Scholar
[2]
V. Tzitzios, G. Basina, A. Bakandritsos, C.G. Hadjipanayis, H. Mao, D. Niarchos, G.C. Hadjipanayis, J. Tucek, and R. Zboril, "Immobilization of magnetic iron oxide nanoparticles on laponite discs - an easy way to biocompatible ferrofluids and ferrogels," in J. Mater. Chem., vol. 20, no. 26, pp.5418-5428, Jun. 2010.
DOI: 10.1039/c0jm00061b
Google Scholar
[3]
A. Taufiq, S. Bahtiar, Sunaryono, N. Hidayat, A. Hidayat, N. Mufti, M. Diantoro, A. Fuad, Munasir, R. Rahmawati, W.A. Adi, S. Pratapa, and Darminto, "Preparation of Superparamagnetic Zn0.5Mn0.5Fe2O4 Particle by Coprecipitation-Sonochemical Method for Radar Absorbing Material," in IOP Conf. Ser. Mater. Sci. Eng., vol. 202, no. 1, p.012024, May 2017.
DOI: 10.1088/1757-899x/202/1/012024
Google Scholar
[4]
X. Zhao, H. Zhao, H. Yuan, dan M. Lan, "Multifunctional superparamagnetic Fe3O4@SiO2 core/shell nanoparticles: Design and application for cell imaging," J. Biomed. Nanotechnol., vol. 10, no. 2, p.262–270, 2014.
DOI: 10.1166/jbn.2014.1641
Google Scholar
[5]
N. Movagharnezhad, S. Ehsanimehr, dan P. Najafi Moghadam, "Synthesis of Poly (N-vinylpyrrolidone)-grafted-Magnetite Bromoacetylated Cellulose via ATRP for Drug Delivery," Mater. Chem. Horizons, vol. 1, no. 2, p.89–98, Sep 2022.
Google Scholar
[6]
M. K. Shahid, S. Phearom, dan Y. G. Choi, "Synthesis of magnetite from raw mill scale and its application for arsenate adsorption from contaminated water," Chemosphere, vol. 203, p.90–95, Jul 2018.
DOI: 10.1016/j.chemosphere.2018.03.150
Google Scholar
[7]
P. Tipsawat, U. Wongpratat, S. Phumying, N. Chanlek, K. Chokprasombat, dan S. Maensiri, "Magnetite (Fe3O4) nanoparticles: Synthesis, characterization and electrochemical properties," Appl. Surf. Sci., vol. 446, p.287–292, Jul 2018.
DOI: 10.1016/j.apsusc.2017.11.053
Google Scholar
[8]
S. Sunaryono, A. Taufiq, M. Munaji, B. Indarto, T. Triwikantoro, and M. Zainuri, "Magneto-elasticity in hydrogels containing Fe3O4 nanoparticles and their potential applications," AIP Conf. Proc., vol. 1555, p.53–56, 2013.
DOI: 10.1063/1.4820992
Google Scholar
[9]
S. Güner, M. Amir, M. Geleri, M. Sertkol, and A. Baykal, "Magneto-optical properties of Mn3+ substituted Fe3O4 nanoparticles," Ceram. Int., vol. 41, no. 9, p.10915–10922, Nov. 2015.
DOI: 10.1016/j.ceramint.2015.05.034
Google Scholar
[10]
A. Taufiq, Sunaryono, E. G. R. Putra, S. Pratapa, and Darminto, "Nano-structural studies on Fe3O4 particles dispersing in a magnetic fluid using x-ray diffractometry and small-angle neutron scattering," Mater. Sci. Forum, vol. 827, p.213–218, 2015.
DOI: 10.4028/www.scientific.net/msf.827.213
Google Scholar
[11]
Y. He, Q. Chen, S. Yang, C. Lu, M. Feng, Y. Jiang, G. Cao, J. Zhang, and C. Liu, "Micro-crack behavior of carbon fiber reinforced Fe3O4/graphene oxide modified epoxy composites for cryogenic application," in Compos. Part A Appl. Sci. Manuf., vol. 108, pp.12-22, May 2018.
DOI: 10.1016/j.compositesa.2018.02.014
Google Scholar
[12]
C. Lou, X. Xiong, Z. Zhang, and Y. Liu, "3-Dimensional graphene/Cu/Fe3O4 composites: Immobilized laccase electrodes for detecting bisphenol A," Journal of Materials Research, vol. 34, no. 17, pp.2964-2975, Sep. 2019.
DOI: 10.1557/jmr.2019.248
Google Scholar
[13]
L. Qiu, P. Guo, H. Zou, Y. Feng, X. Zhang, S. Pervaiz, D. Wen, "Extremely Low Thermal Conductivity of Graphene Nanoplatelets Using Nanoparticle Decoration," ES Energy & Environment, 2018.
Google Scholar
[14]
Y. Guo, X. Yang, K. Ruan, J. Kong, M. Dong, J. Zhang, J. Gu, Z. Guo, "Reduced Graphene Oxide Heterostructured Silver Nanoparticles Significantly Enhanced Thermal Conductivities in Hot-Pressed Electrospun Polyimide Nanocomposites," ACS Applied Materials & Interfaces, vol. 11, no. 28, pp.25465-25473, Jun. 2019.
DOI: 10.1021/acsami.9b10161
Google Scholar
[15]
H. Dong, Y. Li, H. Chai, Y. Cao, X. Chen, "Hydrothermal Synthesis of CuCoS Nano-structure and N-Doped Graphene for High-Performance Aqueous Asymmetric Supercapacitors," ES Energy & Environment, 2019.
Google Scholar
[16]
K. Le, Z. Wang, F. Wang, Q. Wang, Q. Shao, V. Murugadoss, S. Wu, W. Liu, J. Liu, Q. Gao, Z. Guo, "Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors," Dalton Transactions, vol. 48, no. 16, pp.5193-5202, Apr. 2019.
DOI: 10.1039/c9dt00615j
Google Scholar
[17]
L. Wei, K. Lozano, and Y. Mao, "Microwave popped Co(II)-graphene oxide hybrid: Bifunctional catalyst for hydrogen evolution reaction and hydrogen storage," Eng. Sci., vol. 3, p.62–66, 2018.
Google Scholar
[18]
Y. Cui, S. I. Kundalwal, and S. Kumar, "Gas barrier performance of graphene/polymer nanocomposites," Carbon N. Y., vol. 98, p.313–333, Mar. 2016.
DOI: 10.1016/j.carbon.2015.11.018
Google Scholar
[19]
B. Tan and N. L. Thomas, "A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites," J. Memb. Sci., vol. 514, p.595–612, Sep. 2016.
DOI: 10.1016/j.memsci.2016.05.026
Google Scholar
[20]
B. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, "Graphene and graphene oxide and their uses in barrier polymers," J. Appl. Polym. Sci., vol. 131, no. 1, Jan. 2014.
DOI: 10.1002/app.39628
Google Scholar
[21]
H. Cai, C. Feng, H. Xiao, and B. Cheng, "Synthesis of Fe3O4/rGO@PANI with three-dimensional flower-like nanostructure and microwave absorption properties," J. Alloys Compd., vol. 893, p.162227, Feb. 2022.
DOI: 10.1016/j.jallcom.2021.162227
Google Scholar
[22]
F. A. Ghauri, M. A. Raza, M. S. Baig, and S. Ibrahim, "Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings," Mater. Res. Express, vol. 4, no. 12, p.125601, Dec. 2017.
DOI: 10.1088/2053-1591/aa9aac
Google Scholar
[23]
Y. N. Singhbabu, B. Sivakumar, S. K. Choudhary, S. Das, and R. K. Sahu, "Corrosion-protective reduced graphene oxide coated cold rolled steel prepared using industrial setup: A study of protocol feasibility for commercial production," Surf. Coatings Technol., vol. 349, p.119–132, Sep. 2018.
DOI: 10.1016/j.surfcoat.2018.05.046
Google Scholar
[24]
H. Hu, W. Lu, X. Liu, F. Meng, and J. Zhu, "A high-response electrochemical as(Iii) sensor using Fe3O4–rGO nanocomposite materials," Chemosensors, vol. 9, no. 6, p.150, Jun. 2021.
DOI: 10.3390/chemosensors9060150
Google Scholar
[25]
A. A. Qureshi, S. R. Ghorbani, S. K. Vashisth, M. A. Mekonnen, and S. U. Khan, "Facile formation of SnO2-TiO2 based photoanode and Fe3O4@rGO based counter electrode for efficient dye-sensitized solar cells," Materials Science in Semiconductor Processing, vol. 123, p.105545, Mar. 2021.
DOI: 10.1016/j.mssp.2020.105545
Google Scholar
[26]
Sunaryono, D. P. Rahman, D. Kurniawan, and A. S. Nugroho, "Effect of Polyethylene Glycol (PEG) on Particle Distribution of Mn0.25Fe2.75O4-PEG 6000 Nanoparticles," Journal of Physics: Conference Series, vol. 1093, no. 1, pp.0-8, 2018.
Google Scholar
[27]
A. Saini, A. Kumar, V. K. Anand, and S. C. Sood, "Synthesis of Graphene Oxide using Modified Hummer's Method and its Reduction using Hydrazine Hydrate," Int. J. Eng. Trends Technol., vol. 40, no. 2, p.67–71, 2016.
DOI: 10.14445/22315381/ijett-v40p211
Google Scholar
[28]
S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, "Hydrazine-reduction of graphite- and graphene oxide," Carbon N. Y., vol. 49, no. 9, p.3019–3023, 2011.
DOI: 10.1016/j.carbon.2011.02.071
Google Scholar
[29]
H. P. Klug and L. E. Alexander, "X-Ray Diffraction," in Metamorphism, M. Frey and D. Robinson (Eds.), pp.108-142, 1974.
Google Scholar
[30]
R. W. Chantrell, J. Popplewell, and S. W. Charles, "Measurements of particle size distribution parameters in ferrofluids," IEEE Trans. Magn., vol. 14, no. 5, p.975–977, 1978.
DOI: 10.1109/tmag.1978.1059918
Google Scholar
[31]
S. Sunaryono. Taufiq, A. Mashuri. Pratapa, S. Zainuri, M. Triwikantoro. Darminto., "Various magnetic properties of magnetite nanoparticles synthesized from iron-sands by coprecipitation method at room temperature," Mater. Sci. Forum, vol. 827, p.229–234, 2015.
DOI: 10.4028/www.scientific.net/msf.827.229
Google Scholar
[32]
K. Saputra, S. Sunaryono, S. Hidayat, H. Wisodo, and A. Taufiq, "Investigation of nanostructural and magnetic properties of Mn0.25Fe2.75O4/AC nanoparticles," Mater. Today Proc., vol. 44, p.3350–3354, 2020.
DOI: 10.1016/j.matpr.2020.11.646
Google Scholar
[33]
H. Shokrollahi, "A review of the magnetic properties, synthesis methods and applications of maghemite," J. Magn. Magn. Mater., vol. 426, p.74–81, Mar. 2017.
Google Scholar
[34]
T. Kamakshi, G. S. Sundari, H. Erothu, and T. P. Rao, "Synthesis and characterization ofgraphene based iron oxide (Fe3O4) nanocomposites," Rasayan J. Chem., vol. 11, no. 3, p.1113–1119, 2018.
DOI: 10.31788/rjc.2018.1134003
Google Scholar
[35]
T. T. Tung, J. F. Feller, T. Kim, H. Kim, W. S. Yang, and K. S. Suh, "Electromagnetic properties of Fe3O4-functionalized graphene and its composites with a conducting polymer," J. Polym. Sci. Part A Polym. Chem., vol. 50, no. 5, p.927–935, Mar. 2012.
DOI: 10.1002/pola.25847
Google Scholar
[36]
N. Munasir, R. P. Kusumawati, D. H. Kusumawati, Z. A. I. Supardi, A. Taufiq, and Darminto, "Characterization of Fe3O4/rGO composites from natural sources: Application for dyes color degradation in aqueous solution," Int. J. Eng. Trans. A Basics, vol. 33, no. 1, p.18–27, 2020.
DOI: 10.5829/ije.2020.33.01a.03
Google Scholar
[37]
S. Raza, X. Yong, M. Raza, and J. Deng, "Synthesis of biomass trans-anethole based magnetic hollow polymer particles and their applications as renewable adsorbent," Chem. Eng. J., vol. 352, p.20–28, Nov. 2018.
DOI: 10.1016/j.cej.2018.06.185
Google Scholar
[38]
X. M. Li, G. Xu, Y. Liu, and T. He, "Magnetic Fe3O4 Nanoparticles: Synthesis and Application in Water Treatment," Nanoscience & Nanotechnology-Asia, vol. 1, pp.14-24, 2011.
DOI: 10.2174/2210682011101010014
Google Scholar
[39]
W. M. Daoush, "Co-Precipitation and Magnetic Properties of Magnetite Nanoparticles," Nanomed. Res. J., vol. 5, pp.3-8, 2017.
Google Scholar
[40]
C. Scherer and A. M. Figueiredo, "Ferrofluids: Properties and Applications," Brazilian Journal of Physics, vol. 35, no. 3A, pp.718-727, Sep. 2005.
DOI: 10.1590/s0103-97332005000400018
Google Scholar
[41]
E. C. Spencer, N. L. Ross, R. E. Olsen, B. Huang, A. I. Kolesnikov, and B. F. Woodfield, "Thermodynamic Properties of α-Fe2O3 and Fe3O4 Nanoparticles," Journal of Physical Chemistry C, vol. 119, pp.9609-9616, 2015.
DOI: 10.1021/acs.jpcc.5b01481
Google Scholar
[42]
J. Dulińska-Litewka, A. Łazarczyk, P. Hałubiec, O. Szafrański, K. Karnas, and A. Karewicz, "Superparamagnetic Iron Oxide Nanoparticles-Current and Prospective Medical Applications," Materials, vol. 12, 2019.
DOI: 10.3390/ma12040617
Google Scholar
[43]
M. Maulinda, I. Zein, and Z. Jalil, "Characteristics of Natural Magnetite (Fe3O4) from Beach Sand as Catalyst Application in Materials Industry," Jurnal Natural, vol. 19, pp.1-5, 2019.
DOI: 10.24815/jn.v19i1.12475
Google Scholar
[44]
T. Bao, M. M. Damtie, K. Wu, X. L. Wei, Y. Zhang, J. Chen, C. X. Deng, J. Jin, Z. M. Yu, L. Wang, and R. L. Frost, "Rectorite-supported nano- Fe3O4 composite materials as catalyst for P-chlorophenol degradation: preparation, characterization, and mechanism," Appl Clay Sci, vol. 176, pp.66-77, 2019.
DOI: 10.1016/j.clay.2019.04.020
Google Scholar