Magnetic Field Effects on Electron Eigenstates in a Concentric Triple Quantum Ring

Article Preview

Abstract:

In this paper, the electronic eigenstates and energy spectra of a two-dimensional system formed by three concentric, coupled, semiconductor quantum rings with a perpendicular magnetic field in the presence and the absence of a single ionized hydrogenic donor impurity are studied. It is found that the magnetic field localizes the electron wave function in the inner rings. The effects of hydrogenic donor on the electronic structure of concentric triple quantum rings are investigated in the both on- and off-center configurations. It is shown that as the donor moves away from the center of the system, the ground state energy decreases monotonically, the degeneracy is lifted and the gap between the energy levels increases. Also, the binding energy of donor impurity increases with increasing magnetic field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-130

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Tarucha, D. G. Austing, and T. Honda, R. J. van der Hage and L. P. Kouwenhoven, Spontaneous symmetry breaking in single and molecular quantum dots, Phys. Rev. Lett. 77 (1996) 5325-5328.

DOI: 10.1103/physrevlett.77.3613

Google Scholar

[2] S. M. Reimann and M. Manninen, Electronic structure of quantum dots, Rev. Mod. Phys. 74 (2002) 1283-1342.

DOI: 10.1103/revmodphys.74.1283

Google Scholar

[3] Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in quantum theory, Phys. Rev. 115 (1959) 485-491.

DOI: 10.1103/physrev.115.485

Google Scholar

[4] R.A. Webb, S. Washburn, C.P. Umbach, R.B. Laibowitz, Observation of h/e Aharonov-Bohm oscillations in normal-metal rings, Phys. Rev. Lett. 54 (1985) 2696-2699.

DOI: 10.1103/physrevlett.54.2696

Google Scholar

[5] G. Timp, A.M. Chang, J.E. Cunningham, T.Y. Chang, P. Mankiewich, R. Behringer, R.E. Howard, Observation of the Aharonov-Bohm effect for 1c , Phys. Rev. Lett, 58 (1987) 2814-2817.

DOI: 10.1103/physrevlett.58.2814

Google Scholar

[6] S. Pedersen, A.E. Hansen, A. Kristensen, C.B. SHdersen P.E. Lindelof, Observation of quantum asymmetry in an Aharonov-Bohm ring, Phys. Rev. B 61 (2000) 5457-5460.

DOI: 10.1103/physrevb.61.5457

Google Scholar

[7] M. Pi, A. Emperador, M. Barranco, F. Garcias, K. Muraki, S. Tarucha and D. G. Austing, Dissociation of Vertical Semiconductor Diatomic Artificial Molecules, Phys Rev. Lett, 87 (2001) 066801-4.

DOI: 10.1103/physrevlett.87.066801

Google Scholar

[8] M. Marlo, A. Harju, and R.M. Nieminen, Role of interactions in the far-infrared spectrum of a lateral quantum-dot molecule, Phys. Rev. Lett. 91 (2003) 187401-4.

DOI: 10.1103/physrevlett.91.187401

Google Scholar

[9] S. Viefers, P. Koskinen, P.S. Deo and M. Manninen, Quantum rings for beginners: energy spectra and persistent currents, Physica E 21 (2004) 1-35.

DOI: 10.1016/j.physe.2003.08.076

Google Scholar

[10] B.C. Lee, O. Voskoboynikov and C.P. Lee, III-V semiconductor nano-rings, Physica E 24 (2004) 87-91.

Google Scholar

[11] I. Neder, M. Heiblum, Y. Levinson, D. Mahalu and V. Umansky, Unexpected Behavior in a Two-Path Electron Interferometer, Phys. Rev. Lett. 96 (2006) 016804-4.

DOI: 10.1103/physrevlett.96.016804

Google Scholar

[12] T. Chwiej and B. Szafran, Few-electron artificial molecules formed by laterally coupled quantum rings, Phys Rev. B 78 (2008) 245306-17.

DOI: 10.1103/physrevb.78.245306

Google Scholar

[13] T. Kuroda, T. Mano, T. Ochiai, S. Sanguinetti, K. Sakoda, G. Kido, and N. Koguchi, Optical transitions in quantum ring complexes, PhysRev. B. 72 (2005) 205301-8.

DOI: 10.1103/physrevb.72.205301

Google Scholar

[14] T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai, T. Tateno, J. Kim, T. Noda, M. Kawabe, K. Sakoda, G. Kido, and N. Koguchi, Self-assembly of concentric quantum double rings, Nano Lett. 5 (2005) 425-428.

DOI: 10.1021/nl048192+

Google Scholar

[15] A. Fuhrer, S. Lüscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegschneider, and M. Bichler, Energy spectra of quantum rings, Nature 413 (2001) 822-825.

DOI: 10.1038/35101552

Google Scholar

[16] U. F. Keyser, C. Fu¨hner, S. Borck, R. J. Haug, M. Bichler, G. Abstreiter, W. Wegscheider, Kondo effect in a few-electron quantum ring, Phys. Rev. Lett. 90 (2003) 196601-4.

DOI: 10.1103/physrevlett.90.196601

Google Scholar

[17] G. Fuster, M. Pacheco, and Z. Barticevic, Electronic Properties of Coupled Quantum Rings in the Presence of a Magnetic Field, Brazilian Journal of Physics 34(2B) (2004) 666-668.

DOI: 10.1590/s0103-97332004000400037

Google Scholar

[18] B. Szafran, and F. M. Peeters, Few-electron eigenstates of concentric double quantum rings, Phys Rev. B 72 (2005) 155316-9.

DOI: 10.1103/physrevb.72.155316

Google Scholar

[19] J. Planelles, and J.I. Climente, Semiconductor concentric double rings in a magnetic field, Eur. Phys. J. B 48 (2005) 65-70.

DOI: 10.1140/epjb/e2005-00384-y

Google Scholar

[20] J. I. Climente, J. Planelles, M. Barranco, F. Malet, and M. Pi, Electronic structure of fewelectron concentric double quantum rings, Phys Rev. B 73 (2006) 235327-6.

DOI: 10.1103/physrevb.73.235327

Google Scholar

[21] F.J. Culchac, N. Porras-Montenegro, J.C. Granada, A. Latge, Energy spectrum in a concentric double quantum ring of GaAs-(Ga, Al)As under applied magnetic fields, Microelectronics Journal 39 (2008) 402-406.

DOI: 10.1016/j.mejo.2007.07.063

Google Scholar

[22] J.I. Climente and J. Planelles, Far-infrared absorption of vertically coupled self-assembled quantum rings, Phys. Rev. B 72 (2005) 155322-5.

DOI: 10.1103/physrevb.72.155322

Google Scholar

[23] F. Malet, M. Barranco, E. Lipparini, R. Mayol, and M. Pi, Vertically coupled double quantum rings at zero magnetic field, Phys. Rev. B 73 (2006) 245324-7.

DOI: 10.1103/physrevb.73.245324

Google Scholar

[24] J. Planelles, F. Rajadell, J.I. Climente, M. Royo and J.L. Movilla, Electronic states of laterally coupled quantum rings, Journal of Physics, Conference Series 61 (2007) 936-941.

DOI: 10.1088/1742-6596/61/1/186

Google Scholar

[25] C. M. Lee, J. Q. Li, W. Y. Ruan, and R. C. H. Lee, Energy spectra of a magnetic quantum ring with an off-center Impurity, Commun. Theor. Phys. 45 (2006) 737-740.

DOI: 10.1088/0253-6102/45/4/032

Google Scholar

[26] C. M. Lee, J. Q. Li, W. Y. Ruan, and R. C. H. Lee, Optical spectra and intensities of a magnetic quantum ring bound to an off-center neutral donor D0, Phys Rev. B 73 (2006) 212407.

DOI: 10.1103/physrevb.73.219902

Google Scholar

[27] G. Wang and P. Zhang, Hydrogenic impurity binding energy in self-assembled GaAs/Ga 1−x AlxAs quantum rings, Appl Phys Lett. 103 (2008) 063713-6.

DOI: 10.1063/1.2887994

Google Scholar

[28] M. Amado, R. P. A. Lima, C. G. Santander and F. D. Adame, Donor-bound electrons in quantum rings under magnetic fields, Phys Rev. B 76 (2007) 073312-4.

DOI: 10.1103/physrevb.76.073312

Google Scholar

[29] R. P.A. Lima, M. Amado, Electronic states of on- and off-center donors in quantum rings of finite width, Journal of Luminescence 128 (2008) 858-861.

DOI: 10.1016/j.jlumin.2007.11.022

Google Scholar

[30] G.Y. Chen, Y.N. Chen, D.S. Chuu, The Aharonov-Bohm effect in concentric quantum double rings, Solid State Communications 143 (2007) 515-518.

DOI: 10.1016/j.ssc.2007.07.020

Google Scholar

[31] C. Somaschini, S. Bietti, S. Sanguinetti and N. Koguchi, Fabrication of GaAs Concentric Multiple Quantum Rings by Droplet Epitaxy, E-MRS 2009 Spring Meeting, Strasbourg, France, June 8 - 12, (2009).

DOI: 10.1088/1757-899x/6/1/012008

Google Scholar

[32] W.C. Tan and J.C. Inkson, Electron states in a two-dimensional ring-an exactly soluble model, Semicond. Sci. Technol. 11 (1996) 1635-1641.

DOI: 10.1088/0268-1242/11/11/001

Google Scholar

[33] W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. J. Applied Mathematics 9 (1951) 17-29.

DOI: 10.1090/qam/42792

Google Scholar

[34] Y. Saad, Numerical Methods for large ScaleEigenvalue Problems, Halsted Press, New York, (1992).

Google Scholar

[35] R.B. Morgan, On restarting the Arnoldi method for large nonsymmetric eigenvalue problems, Math. Comput, Math. Comp. 65 (1996) 1213-1230.

DOI: 10.1090/s0025-5718-96-00745-4

Google Scholar