ZnO Nano/Microstructures Grown by Laser Assisted Flow Deposition

Abstract:

Article Preview

Nano/microstructures of zinc oxide (ZnO) were grown by the laser assisted flow deposition (LAFD) method. This new process has proved to be very efficient, allowing high yield ZnO deposits at high-rate applicable to large-scale substrates. Laser local heating promotes fast ZnO decomposition and recombination under a self-catalytic vapour–liquid-solid mechanism for the nucleation and growth. Three types of ZnO morphologies were obtained according to the temperature/oxygen availability inside the growth chamber. The morphology can also be controlled adding rare-earth elements to the initial composition. Particularly, tetrapod morphology was obtained by europium oxide addition to the precursors. The structural and microstructural characterizations confirm the good crystallinity of the wurtzite structure. The photoluminescence spectroscopy revealed high optical quality of the as-grown ZnO. Specifically, the free exciton recombination and a strong near band edge recombination due to donor bound exciton transitions can be clearly recognized, although deep level emission in the green spectral region is present.

Info:

Periodical:

Journal of Nano Research (Volumes 18-19)

Pages:

129-137

Citation:

J. Rodrigues et al., "ZnO Nano/Microstructures Grown by Laser Assisted Flow Deposition", Journal of Nano Research, Vols. 18-19, pp. 129-137, 2012

Online since:

July 2012

Export:

Price:

$38.00

[1] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P 2001 Science 292 1897 - 1899.

[2] Klingshirn C 2007 phys. stat. sol. (b) 9 3027 - 3073.

[3] Lin S S, He H P, Lu Y F, Ye Z Z 2009 J. Appl. Phys. 106 093508 - 093508-5.

[4] Wang Z L 2008 Adv. Funct. Mat. 18 3553 - 3567.

[5] Zhou J, Gu Y, Hu Y, Mai W, Yeh P-H, Bao G, Sood A K, Polla D L, Wang Z L 2009 Appl. Phys. Lett. 94 191103 - 191103-3.

DOI: https://doi.org/10.1063/1.3133358

[6] Ryu Y, Lee T S, Lubguban J A, White H W, Kim B J, Park Y S, Youn C J 2006 Appl. Phys. Lett. 88 241108 - 241108-3.

[7] Hu Y, Chang Y, Fei P, Snyder R L, Wang Z L 2010 ACS Nano 4 1234 - 1240.

[8] Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi H J 2002 Adv. Funct. Mat. 12 323- 331.

[9] Wang Z L, 2004 Mat. Today 7 26 - 33.

[10] Banerjee D, Lao J Y, Wang D Z, Huang J Y, Ren Z F, Steeves D, Kimball B, Sennett M 2003 Appl. Phys. Lett. 83 2061 - (2063).

[11] Grabowska J, Meaney A, Nanda K K, Mosnier J P, Henry M O, Duclère J R, McGlynn E, 2005 Phys. Rev. B 71 115439 -115439-7.

[12] Biswas M, Kwack H S, Dang L S, Henry M O, McGlynn E 2009 Nanotechn. 20 255703 - 255703-6.

[13] Rahm A, Lorenz M, Nobis T, Zimmermann G, Grundmann M, Fuhrmann B, Syrowatka F 2007 Appl. Phys. A 88 31 - 34.

[14] Sandana V E, Rogers D J, Hosseini Teherani F, McClintock R, Bayram C, Razeghi M, Drouhin H J, Clochard M C, Sallet V, Garry G, Falyouni F, 2009 J. Vac. Sci. Technol. B 27 1678 - 1683.

DOI: https://doi.org/10.1116/1.3137990

[15] Willander M, Nur O, Zhao Q X, Yang L L, Lorenz M, Cao B Q, Zuñinga Pérez J, Czekalla C, Zimmermann G, Grundmann M, Bakin A, Behrends A, Al-Suleiman M, El-Shaer A, Che Mofor A, Postels B, Waag A, Boukos N, Travlos A, Kwack H S, J. Guinard, Dang D L S 2009 Nanotechn. 20 332001 - 332001-40.

DOI: https://doi.org/10.1088/0957-4484/20/33/332001

[16] Peres M, Soares M J, Neves A J, Monteiro T, Sandana V E, Teherani F, Rogers D J, 2010 Phys. Stat. Sol. (a) 247 1695 - 1698.

DOI: https://doi.org/10.1002/pssb.200983685

[17] Park W I, Kim D H, Jung S W, Yi G C, 2002 Appl. Phys. Lett. 80 4232 - 4234.

[18] W. I. Park, G. -C. Yi, M. Kim, S. J. Pennycook 2002 Adv. Mat. 14 1841 - 1843.

[19] Ogata K, Maejima K, Fujita Sz, Fujita Sg 2003 J. Cryst. Growth 248 25 - 30.

[20] Dalal S H, Baptista D L, Teo K B K, Lacerda R G, Jefferson D A, Milne W I 2006 Nanotechnology 17 4811 - 4818.

[21] Schmidt-Mende L and MacManus-Driscoll J L 2007 Materials Today 10.

[5] 40 - 48.

[22] Jeong J S, Lee J Y, Cho J H, Lee C J, An S J, Yi G C, Gronsky R, 2005 Nanotechnology 16 2455 - 2461.

[23] Levin I, Davydov A, Nikoobakht B, Sanford N, Mogilevsky P 2005 Appl. Physics Lett. 87 103110 - 103110-3.

DOI: https://doi.org/10.1063/1.2041832

[24] Landolt-Bornstein Numerical data and Functional Relationships in Science and Technology, in: K. H. Hellwege (ed. ), New Series, vol. 17 (b); Springer, Berlin (1982).

[25] Scott J F 1970 Physical Review B 2 1209 - 1211.

[26] Zhu X, Wu H Z, Jiang D Q, Yuan Z, Jin G, Kong J, Shen W 2010 Optics Communications 283 2695 - 2699.

[27] Fan Z Y, Lu J G 2005 J. Nanosci. Nanotechnol. 5 1561 - 1573.

[28] Huang M H, Wu Y, Feick H, Tran N, Weber E, Yang P 2001 Adv. Mater. 13.

[2] 113 - 116.

[29] Zheng K, Xu C X, Zhu G P, Li X, Liu J P, Yang Y, Sun X W 2008 Physica E 40 2677 - 2681.

[30] Wang J L, Kong X Y, Juo J M 2003 Phys. Rev. Lett. 91 185502 – 185502-4.

[31] Gupta B K, Haranath D, Chawla S, Chander H, Singh V N, Shanker V 2010 Nanotechnology 21 225709 - 225709-8.

[32] Shen G, Cho J H, Yoo J K, Yi G C, Lee C J 2005 J. Phys. Chem. B 109 5491 - 5496.

[33] Tang C C, Fan S S 2001 Chem. Phys. Lett. 333 12 - 15.

[34] Meyer B K, Alves H, Hofmann D M, Kriegseis W, Forster D, Bertram F, Christen J, Hoffmann A, Strassburg M, Dworzak M, Haboeck U, Rodina A V 2004 phys. sta. sol. (b) 241 231 - 260.

DOI: https://doi.org/10.1002/pssb.200301962

[35] Thonke K, Gruber Th, Teofilov N, Schonfelder R, Waag A, Sauer R 2001 Physica B 308 945 - 948.

DOI: https://doi.org/10.1016/s0921-4526(01)00877-8

[36] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301 - 041301-103.

DOI: https://doi.org/10.1063/1.1992666

[37] Monteiro T, Neves A J, Carmo M C, Soares M J, Peres M, Wang J, Alves E, Rita E, Wahl U 2005 J. Appl. Phys. 98 013502 - 013502-6.

Fetching data from Crossref.
This may take some time to load.