ZnO Nano/Microstructures Grown by Laser Assisted Flow Deposition

Article Preview

Abstract:

Nano/microstructures of zinc oxide (ZnO) were grown by the laser assisted flow deposition (LAFD) method. This new process has proved to be very efficient, allowing high yield ZnO deposits at high-rate applicable to large-scale substrates. Laser local heating promotes fast ZnO decomposition and recombination under a self-catalytic vapour–liquid-solid mechanism for the nucleation and growth. Three types of ZnO morphologies were obtained according to the temperature/oxygen availability inside the growth chamber. The morphology can also be controlled adding rare-earth elements to the initial composition. Particularly, tetrapod morphology was obtained by europium oxide addition to the precursors. The structural and microstructural characterizations confirm the good crystallinity of the wurtzite structure. The photoluminescence spectroscopy revealed high optical quality of the as-grown ZnO. Specifically, the free exciton recombination and a strong near band edge recombination due to donor bound exciton transitions can be clearly recognized, although deep level emission in the green spectral region is present.

You might also be interested in these eBooks

Info:

Periodical:

Journal of Nano Research (Volumes 18-19)

Pages:

129-137

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P 2001 Science 292 1897 - 1899.

DOI: 10.1126/science.1060367

Google Scholar

[2] Klingshirn C 2007 phys. stat. sol. (b) 9 3027 - 3073.

Google Scholar

[3] Lin S S, He H P, Lu Y F, Ye Z Z 2009 J. Appl. Phys. 106 093508 - 093508-5.

Google Scholar

[4] Wang Z L 2008 Adv. Funct. Mat. 18 3553 - 3567.

Google Scholar

[5] Zhou J, Gu Y, Hu Y, Mai W, Yeh P-H, Bao G, Sood A K, Polla D L, Wang Z L 2009 Appl. Phys. Lett. 94 191103 - 191103-3.

DOI: 10.1063/1.3133358

Google Scholar

[6] Ryu Y, Lee T S, Lubguban J A, White H W, Kim B J, Park Y S, Youn C J 2006 Appl. Phys. Lett. 88 241108 - 241108-3.

DOI: 10.1063/1.2210452

Google Scholar

[7] Hu Y, Chang Y, Fei P, Snyder R L, Wang Z L 2010 ACS Nano 4 1234 - 1240.

Google Scholar

[8] Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He R, Choi H J 2002 Adv. Funct. Mat. 12 323- 331.

DOI: 10.1002/1616-3028(20020517)12:5<323::aid-adfm323>3.0.co;2-g

Google Scholar

[9] Wang Z L, 2004 Mat. Today 7 26 - 33.

Google Scholar

[10] Banerjee D, Lao J Y, Wang D Z, Huang J Y, Ren Z F, Steeves D, Kimball B, Sennett M 2003 Appl. Phys. Lett. 83 2061 - (2063).

DOI: 10.1063/1.1609036

Google Scholar

[11] Grabowska J, Meaney A, Nanda K K, Mosnier J P, Henry M O, Duclère J R, McGlynn E, 2005 Phys. Rev. B 71 115439 -115439-7.

Google Scholar

[12] Biswas M, Kwack H S, Dang L S, Henry M O, McGlynn E 2009 Nanotechn. 20 255703 - 255703-6.

Google Scholar

[13] Rahm A, Lorenz M, Nobis T, Zimmermann G, Grundmann M, Fuhrmann B, Syrowatka F 2007 Appl. Phys. A 88 31 - 34.

DOI: 10.1007/s00339-007-3979-8

Google Scholar

[14] Sandana V E, Rogers D J, Hosseini Teherani F, McClintock R, Bayram C, Razeghi M, Drouhin H J, Clochard M C, Sallet V, Garry G, Falyouni F, 2009 J. Vac. Sci. Technol. B 27 1678 - 1683.

DOI: 10.1116/1.3137990

Google Scholar

[15] Willander M, Nur O, Zhao Q X, Yang L L, Lorenz M, Cao B Q, Zuñinga Pérez J, Czekalla C, Zimmermann G, Grundmann M, Bakin A, Behrends A, Al-Suleiman M, El-Shaer A, Che Mofor A, Postels B, Waag A, Boukos N, Travlos A, Kwack H S, J. Guinard, Dang D L S 2009 Nanotechn. 20 332001 - 332001-40.

DOI: 10.1088/0957-4484/20/33/332001

Google Scholar

[16] Peres M, Soares M J, Neves A J, Monteiro T, Sandana V E, Teherani F, Rogers D J, 2010 Phys. Stat. Sol. (a) 247 1695 - 1698.

DOI: 10.1002/pssb.201090014

Google Scholar

[17] Park W I, Kim D H, Jung S W, Yi G C, 2002 Appl. Phys. Lett. 80 4232 - 4234.

Google Scholar

[18] W. I. Park, G. -C. Yi, M. Kim, S. J. Pennycook 2002 Adv. Mat. 14 1841 - 1843.

Google Scholar

[19] Ogata K, Maejima K, Fujita Sz, Fujita Sg 2003 J. Cryst. Growth 248 25 - 30.

Google Scholar

[20] Dalal S H, Baptista D L, Teo K B K, Lacerda R G, Jefferson D A, Milne W I 2006 Nanotechnology 17 4811 - 4818.

DOI: 10.1088/0957-4484/17/19/005

Google Scholar

[21] Schmidt-Mende L and MacManus-Driscoll J L 2007 Materials Today 10.

Google Scholar

[5] 40 - 48.

Google Scholar

[22] Jeong J S, Lee J Y, Cho J H, Lee C J, An S J, Yi G C, Gronsky R, 2005 Nanotechnology 16 2455 - 2461.

Google Scholar

[23] Levin I, Davydov A, Nikoobakht B, Sanford N, Mogilevsky P 2005 Appl. Physics Lett. 87 103110 - 103110-3.

DOI: 10.1063/1.2041832

Google Scholar

[24] Landolt-Bornstein Numerical data and Functional Relationships in Science and Technology, in: K. H. Hellwege (ed. ), New Series, vol. 17 (b); Springer, Berlin (1982).

Google Scholar

[25] Scott J F 1970 Physical Review B 2 1209 - 1211.

Google Scholar

[26] Zhu X, Wu H Z, Jiang D Q, Yuan Z, Jin G, Kong J, Shen W 2010 Optics Communications 283 2695 - 2699.

Google Scholar

[27] Fan Z Y, Lu J G 2005 J. Nanosci. Nanotechnol. 5 1561 - 1573.

Google Scholar

[28] Huang M H, Wu Y, Feick H, Tran N, Weber E, Yang P 2001 Adv. Mater. 13.

Google Scholar

[2] 113 - 116.

Google Scholar

[29] Zheng K, Xu C X, Zhu G P, Li X, Liu J P, Yang Y, Sun X W 2008 Physica E 40 2677 - 2681.

Google Scholar

[30] Wang J L, Kong X Y, Juo J M 2003 Phys. Rev. Lett. 91 185502 – 185502-4.

Google Scholar

[31] Gupta B K, Haranath D, Chawla S, Chander H, Singh V N, Shanker V 2010 Nanotechnology 21 225709 - 225709-8.

DOI: 10.1088/0957-4484/21/22/225709

Google Scholar

[32] Shen G, Cho J H, Yoo J K, Yi G C, Lee C J 2005 J. Phys. Chem. B 109 5491 - 5496.

Google Scholar

[33] Tang C C, Fan S S 2001 Chem. Phys. Lett. 333 12 - 15.

Google Scholar

[34] Meyer B K, Alves H, Hofmann D M, Kriegseis W, Forster D, Bertram F, Christen J, Hoffmann A, Strassburg M, Dworzak M, Haboeck U, Rodina A V 2004 phys. sta. sol. (b) 241 231 - 260.

DOI: 10.1002/pssb.200301962

Google Scholar

[35] Thonke K, Gruber Th, Teofilov N, Schonfelder R, Waag A, Sauer R 2001 Physica B 308 945 - 948.

DOI: 10.1016/s0921-4526(01)00877-8

Google Scholar

[36] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301 - 041301-103.

DOI: 10.1063/1.1992666

Google Scholar

[37] Monteiro T, Neves A J, Carmo M C, Soares M J, Peres M, Wang J, Alves E, Rita E, Wahl U 2005 J. Appl. Phys. 98 013502 - 013502-6.

DOI: 10.1063/1.1946200

Google Scholar