An Easy Methodology for the Incorporation of Carbon Nanotubes on Surfaces of Components Applied as Electronic Devices

Article Preview

Abstract:

Carbon nanotubes are grown by catalytic chemical vapour deposition over components of electronic devices. Samples are analyzed by thermogravimetry, scanning and transmission electron microscopy and X-ray photoelectron spectroscopy. The carbon materials deposited on the microchips present the morphology of multiwall carbon nanotubes and grow vertically aligned on the substrates. The preparation procedure parameters are changed to control sizes and height of the grown multiwall carbon nanotubes. The selectivity to incorporate, or not, carbon nanotubes depends on the chemical composition of the substrate. While carbon nanotubes are efficiently grown on Au surfaces, this reaction does not occur on Pt surfaces. These results correlate with a heterogeneous nucleation of iron catalyst particles on the substrate surface. The resulting composite materials can find numerous technological applications.

You might also be interested in these eBooks

Info:

Periodical:

Journal of Nano Research (Volumes 18-19)

Pages:

157-163

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Alonso-Lomillo, O. Rüdiger, A. Maroto-Valiente, M. Velez, I. Rodríguez-Ramos, F. J. Muñoz, V. M. Fernández and A. L. De Lacey, Hydrogenase-coated carbon nanotubes for efficient H2 oxidation, Nano Lett., 7 (2007) 1603-1608.

DOI: 10.1021/nl070519u

Google Scholar

[2] P.G. Collins, M.S. Arnold and P. Avouris, Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science 292 (2001) 706-709.

DOI: 10.1126/science.1058782

Google Scholar

[3] G. Chai, L. Chow, D. Zhou and S.R. Byahut, Focused-ion-beam assisted fabrication of individual multiwall carbon nanotube field emitter, Carbon 43 (2005) 2083-(2087).

DOI: 10.1016/j.carbon.2005.03.009

Google Scholar

[4] A. Naeemi and J.D. Meindl, Monolayer metallic nanotube interconnects: promising candidates for short local interconnects, IEEE Electron. Device Lett. 26 (2005) 544-546.

DOI: 10.1109/led.2005.852744

Google Scholar

[5] Q. Ngo, T. Yamada, M. Suzuki, Y. Ominami, A.M. Cassell, J. Li, M. Meyyappan and C.Y. Yang, Structural and electrical characterization of carbon nanofibers for interconnect via applications, IEEE Trans. Nanotechnol. 6 (2007) 688-695.

DOI: 10.1109/tnano.2007.907400

Google Scholar

[6] F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhogl, M. Liebau, E. Unger and W. Honlein, Carbon nanotubes in interconnect applications, Microelectron. Eng. 64 (2002) 399-408.

DOI: 10.1016/s0167-9317(02)00814-6

Google Scholar

[7] J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han and M. Meyyappan, Carbon nanotube sensors for gas and organic vapor detection, Nano Lett. 3 (2003) 929-933.

DOI: 10.1021/nl034220x

Google Scholar

[8] J.P. Novak, E.S. Snow, E.J. Houser, D. Park, J.L. Spenowski and R.A. McGill, Nerve agent detection using networks of single-walled carbon nanotubes, Appl. Phys. Lett. 83 (2003) 4026-4028.

DOI: 10.1063/1.1626265

Google Scholar

[9] F. Picard, R. Langlet, M. Arab, M. Devel, C. Girardet, S. Natarajan, S. Chopra and A.M. Rao, Gas-induced variation in the dielectric properties of carbon nanotube bundles for selective sensing, J. Appl. Phys. 97 (2005) 114316-5.

DOI: 10.1063/1.1906289

Google Scholar

[10] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K.J. Cho and H. Dai, Nanotube molecular wires as chemical sensors, Science 287 (2000) 622-625.

DOI: 10.1126/science.287.5453.622

Google Scholar

[11] P. Sharma and P. Ahuja, Recent advances in carbon nanotube-based electronics, Mat. Res. Bull. 43 (2008) 2517-2526.

DOI: 10.1016/j.materresbull.2007.10.012

Google Scholar

[12] C. Journet, and P. Bernier, Production of carbon nanotubes, Appl. Phys. A Mater. Sci. Process 67 (1998) 1-9.

Google Scholar

[13] M. Meyyappan, Catalyzed chemical vapor deposition of one-dimensional nanostructures and their applications, Prog Cryst Growth Ch. 55 (2009) 1-21.

Google Scholar

[14] M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson and W.I. Milne, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition, J. Appl. Phys. 90 (2001).

DOI: 10.1063/1.1410322

Google Scholar

[15] R Andrews, D Jacques, D Qian and T. Rantell, Multiwall Carbon Nanotubes: Synthesis and Application, Acc. Chem. Res. 35 (2002) 1008-1017.

DOI: 10.1021/ar010151m

Google Scholar

[16] S. Inoue and Y. Kikuchi, Diameter control and growth mechanism of single-walled carbon nanotubes, Chem. Phys. Lett. 410 (2005) 209-212.

DOI: 10.1016/j.cplett.2005.05.082

Google Scholar

[17] A.G. Nasibulin, P.V. Pikhitsa, H. Jiang and E.I. Kauppinen, Correlation between catalyst particle and single-walled carbon nanotube diameters, Carbon 43 (2005) 2251-2257.

DOI: 10.1016/j.carbon.2005.03.048

Google Scholar

[18] M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Rühle, H. W. Kroto and D. R. M. Walton, Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols, Chem Phys Lett. 338 (2001) 101-107.

DOI: 10.1016/s0009-2614(01)00278-0

Google Scholar

[19] P. Sampedro-Tejedor, A. Maroto-Valiente, D.M. Nevskaia, V. Múñoz, I. Rodríguez-Ramos and A. Guerrero-Ruíz, The effect of growth temperature and iron precursor on the synthesis of high purity carbon nanotubes, Diamond & Related Mater. 16 (2007).

DOI: 10.1016/j.diamond.2006.11.056

Google Scholar

[20] C. Castro, M. Pinault, S. Coste-Leconte, D. Porterat, N. Bendiab, C. Reynaud and M. MayneL'Hermite, Dynamics of catalyst particle formation and multi-walled carbon nanotube growth in aerosol-assisted catalytic chemical vapor deposition, Carbon 48 (2010).

DOI: 10.1016/j.carbon.2010.06.045

Google Scholar

[21] M. Alonso-Lomillo, J. Gonzalo-Ruiz and F. Munoz-Pascual, Biosensor based on platinum chips for glucose determination, Anal. Chim. Acta 547 (2005) 209-214 (2005).

DOI: 10.1016/j.aca.2005.05.037

Google Scholar

[22] M. Pinault, V. Pichot, H. Khodja, P. Launois, C. Reynaud, M. Mayne-L'Hermite, Evidence of sequential lift in growth of aligned multiwalled carbon nanotube multilayers, Nano Lett. 5 (2005) 2394-2398.

DOI: 10.1021/nl051472k

Google Scholar