An Easy Methodology for the Incorporation of Carbon Nanotubes on Surfaces of Components Applied as Electronic Devices

Abstract:

Article Preview

Carbon nanotubes are grown by catalytic chemical vapour deposition over components of electronic devices. Samples are analyzed by thermogravimetry, scanning and transmission electron microscopy and X-ray photoelectron spectroscopy. The carbon materials deposited on the microchips present the morphology of multiwall carbon nanotubes and grow vertically aligned on the substrates. The preparation procedure parameters are changed to control sizes and height of the grown multiwall carbon nanotubes. The selectivity to incorporate, or not, carbon nanotubes depends on the chemical composition of the substrate. While carbon nanotubes are efficiently grown on Au surfaces, this reaction does not occur on Pt surfaces. These results correlate with a heterogeneous nucleation of iron catalyst particles on the substrate surface. The resulting composite materials can find numerous technological applications.

Info:

Periodical:

Journal of Nano Research (Volumes 18-19)

Pages:

157-163

Citation:

M. Pérez-Cadenas et al., "An Easy Methodology for the Incorporation of Carbon Nanotubes on Surfaces of Components Applied as Electronic Devices", Journal of Nano Research, Vols. 18-19, pp. 157-163, 2012

Online since:

July 2012

Export:

Price:

$38.00

[1] A. Alonso-Lomillo, O. Rüdiger, A. Maroto-Valiente, M. Velez, I. Rodríguez-Ramos, F. J. Muñoz, V. M. Fernández and A. L. De Lacey, Hydrogenase-coated carbon nanotubes for efficient H2 oxidation, Nano Lett., 7 (2007) 1603-1608.

DOI: https://doi.org/10.1021/nl070519u

[2] P.G. Collins, M.S. Arnold and P. Avouris, Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science 292 (2001) 706-709.

DOI: https://doi.org/10.1126/science.1058782

[3] G. Chai, L. Chow, D. Zhou and S.R. Byahut, Focused-ion-beam assisted fabrication of individual multiwall carbon nanotube field emitter, Carbon 43 (2005) 2083-(2087).

DOI: https://doi.org/10.1016/j.carbon.2005.03.009

[4] A. Naeemi and J.D. Meindl, Monolayer metallic nanotube interconnects: promising candidates for short local interconnects, IEEE Electron. Device Lett. 26 (2005) 544-546.

DOI: https://doi.org/10.1109/led.2005.852744

[5] Q. Ngo, T. Yamada, M. Suzuki, Y. Ominami, A.M. Cassell, J. Li, M. Meyyappan and C.Y. Yang, Structural and electrical characterization of carbon nanofibers for interconnect via applications, IEEE Trans. Nanotechnol. 6 (2007) 688-695.

DOI: https://doi.org/10.1109/tnano.2007.907400

[6] F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhogl, M. Liebau, E. Unger and W. Honlein, Carbon nanotubes in interconnect applications, Microelectron. Eng. 64 (2002) 399-408.

DOI: https://doi.org/10.1016/s0167-9317(02)00814-6

[7] J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han and M. Meyyappan, Carbon nanotube sensors for gas and organic vapor detection, Nano Lett. 3 (2003) 929-933.

DOI: https://doi.org/10.1021/nl034220x

[8] J.P. Novak, E.S. Snow, E.J. Houser, D. Park, J.L. Spenowski and R.A. McGill, Nerve agent detection using networks of single-walled carbon nanotubes, Appl. Phys. Lett. 83 (2003) 4026-4028.

DOI: https://doi.org/10.1063/1.1626265

[9] F. Picard, R. Langlet, M. Arab, M. Devel, C. Girardet, S. Natarajan, S. Chopra and A.M. Rao, Gas-induced variation in the dielectric properties of carbon nanotube bundles for selective sensing, J. Appl. Phys. 97 (2005) 114316-5.

DOI: https://doi.org/10.1063/1.1906289

[10] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K.J. Cho and H. Dai, Nanotube molecular wires as chemical sensors, Science 287 (2000) 622-625.

[11] P. Sharma and P. Ahuja, Recent advances in carbon nanotube-based electronics, Mat. Res. Bull. 43 (2008) 2517-2526.

DOI: https://doi.org/10.1016/j.materresbull.2007.10.012

[12] C. Journet, and P. Bernier, Production of carbon nanotubes, Appl. Phys. A Mater. Sci. Process 67 (1998) 1-9.

[13] M. Meyyappan, Catalyzed chemical vapor deposition of one-dimensional nanostructures and their applications, Prog Cryst Growth Ch. 55 (2009) 1-21.

[14] M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, D. Roy, J. Robertson and W.I. Milne, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition, J. Appl. Phys. 90 (2001).

DOI: https://doi.org/10.1063/1.1410322

[15] R Andrews, D Jacques, D Qian and T. Rantell, Multiwall Carbon Nanotubes: Synthesis and Application, Acc. Chem. Res. 35 (2002) 1008-1017.

DOI: https://doi.org/10.1021/ar010151m

[16] S. Inoue and Y. Kikuchi, Diameter control and growth mechanism of single-walled carbon nanotubes, Chem. Phys. Lett. 410 (2005) 209-212.

[17] A.G. Nasibulin, P.V. Pikhitsa, H. Jiang and E.I. Kauppinen, Correlation between catalyst particle and single-walled carbon nanotube diameters, Carbon 43 (2005) 2251-2257.

DOI: https://doi.org/10.1016/j.carbon.2005.03.048

[18] M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Rühle, H. W. Kroto and D. R. M. Walton, Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols, Chem Phys Lett. 338 (2001) 101-107.

DOI: https://doi.org/10.1016/s0009-2614(01)00278-0

[19] P. Sampedro-Tejedor, A. Maroto-Valiente, D.M. Nevskaia, V. Múñoz, I. Rodríguez-Ramos and A. Guerrero-Ruíz, The effect of growth temperature and iron precursor on the synthesis of high purity carbon nanotubes, Diamond & Related Mater. 16 (2007).

DOI: https://doi.org/10.1016/j.diamond.2006.11.056

[20] C. Castro, M. Pinault, S. Coste-Leconte, D. Porterat, N. Bendiab, C. Reynaud and M. MayneL'Hermite, Dynamics of catalyst particle formation and multi-walled carbon nanotube growth in aerosol-assisted catalytic chemical vapor deposition, Carbon 48 (2010).

DOI: https://doi.org/10.1016/j.carbon.2010.06.045

[21] M. Alonso-Lomillo, J. Gonzalo-Ruiz and F. Munoz-Pascual, Biosensor based on platinum chips for glucose determination, Anal. Chim. Acta 547 (2005) 209-214 (2005).

DOI: https://doi.org/10.1016/j.aca.2005.05.037

[22] M. Pinault, V. Pichot, H. Khodja, P. Launois, C. Reynaud, M. Mayne-L'Hermite, Evidence of sequential lift in growth of aligned multiwalled carbon nanotube multilayers, Nano Lett. 5 (2005) 2394-2398.

DOI: https://doi.org/10.1021/nl051472k