Modification and Characterization of the Surface of SOI Nanowire Sensors

Article Preview

Abstract:

In the present study, the pursued purposes were: (i) monitoring the electrical properties of silicon-on-insulator nanowires (SOI NWs), (ii) determination of surface treatments suitable for obtaining reproducible states on the surface of SOI NWs after their long-term storage, and (iii) identification of surface treatments suitable for regenerating the NW surface after protein (bovine serum albumin molecules) detection. It is shown that, during storage, with the passage of time a negative effective charge was accumulated on the surface of n-SOI NWs up to surface density Qeff = (2-4)х1012 cm-2, while the interface states at the NW/SiO2 interface underwent relatively slow depassivation. Treatments in H2O2 with subsequent treatments in HF can be used for removing organic contaminations from the NW surface and for regenerating the initial working state of SOI NWs after protein detection.

You might also be interested in these eBooks

Info:

Periodical:

Journal of Nano Research (Volumes 18-19)

Pages:

139-147

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Li, B. Rajendran, T. I. Kamins, X. Li, Y. Chen, R. Stanley Williams, Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation, Appl. Phys. A: Materials Science & Processing, 80 (2005) 1258-1263.

DOI: 10.1007/s00339-004-3157-1

Google Scholar

[2] I. Park, Z. Li, A. P. Pisano, and R. S. Williams, Top-down fabricated silicon nanowire sensor for real-time chemical detection, Nanotechnology, 21 (2010) 015501.

DOI: 10.1088/0957-4484/21/1/015501

Google Scholar

[3] O. V. Naumova, B. I. Fomin, D. A. Nasimov, N. V. Dudchenko, S. F. Devyatova, E. D. Zhanaev, V. P. Popov, A. V. Latyshev, A. L. Aseev, Yu. D. Ivanov and A. I. Archakov, SOI nanowires as sensors for charge detection, Semicond. Sci. Technol. 25, (2010).

DOI: 10.1088/0268-1242/25/5/055004

Google Scholar

[4] E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak and D. B. Turner-Evans, Label-free immunedetection with CMOS-compatible semiconducting nanowires, Nature, 445 (2007) 519-522.

DOI: 10.1038/nature05498

Google Scholar

[5] O. V. Naumova, V. P. Popov, L. N. Safronov, B. I. Fomin, D. A. Nasimov, A. V. Latyshev, A. L. Aseev, Yu. D. Ivanov and A. I. Archakov, Ultra-Thin SOI Layer Nanostructuring and Nanowire Transistor Formation for FemtoMole Electronic Biosensors, ESC Transactions, 25 (2009).

DOI: 10.1149/1.3241580

Google Scholar

[6] E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. A. Reed and T. M. Fahmy, Label-free biomarker detection from whole blood, Nature Nanotechnology, 5 (2009) 138-142.

DOI: 10.1038/nnano.2009.353

Google Scholar

[7] W. Den, H. Bai, and Y. Kang, Organic Airborne Molecular Contamination in Semiconductor Fabrication Clean Rooms, J. Electrochem. Soc., 153 (2006) G149-G159.

DOI: 10.1149/1.2147286

Google Scholar

[8] K. Saga and T. Hattori, Identification and Removal of Trace Organic Contamination on Silicon Wafers Stored in Plastic Boxes, J. Electrochem. Soc., 143 (1996) 3279 -3284.

DOI: 10.1149/1.1837198

Google Scholar

[9] F. Sugimoto and S. Okamura, Adsorption Behavior of Organic Contaminants on a Silicon Wafer Surface, J. Electrochem. Soc., 146 (1999) 2725-2729.

DOI: 10.1149/1.1392000

Google Scholar

[10] E. H. Nicoliannian, J. R. Brews, Metal Oxide Semiconducror Physics and Technology, New York, (1982).

Google Scholar

[11] C. R. Helms and E. H. Poindexter, The silicon-silicon dioxide system: Its microstructure and imperfections, Rep. Prog. Phys. 57 (1994) 791-852.

DOI: 10.1088/0034-4885/57/8/002

Google Scholar

[12] Y. H. Ha , S. Kim , S. Y. Lee, J. H. Kim, D. H. Beak, H. K. Kim, and D. W. Moon, Appl. Phys. Lett., 74 (1999) 3510.

Google Scholar

[13] D. J. Di Maria and J. H. Stathis, Defect production, degradation, and breakdown of silicon dioxide films, J. Appl. Phys., 70 (1991) 1500.

Google Scholar

[15] A. J. Moulson, J. P. Roberts, The diffusion of water in optical fibers, Trans. Brit. Ceram. Soc. 59 (1960) 388.

Google Scholar