[1]
W. Gao, A. Kahn, Electrical doping: the impact on interfaces of π-conjugated molecular films, J. of Physics: Condensed Matter. 15(38) (2003) S2757.
DOI: 10.1088/0953-8984/15/38/014
Google Scholar
[2]
Serge L. Rudaz, U.S. Patent 5, 729, 029. (1998).
Google Scholar
[3]
S. Yu, J. Frisch, A. Opitz, E. Cohen, M. Bendikov, N. Koch, I. Salzmann, Effect of molecular electrical doping on polyfuran based photovoltaic cells, Applied Physics Letters. 106(20) (2015) 203301.
DOI: 10.1063/1.4921484
Google Scholar
[4]
A. Kahn, N. Koch, W. Gao, Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films, J. of Polymer Science Part B: Polymer Physics. 41(21) (2003) 2529-2548.
DOI: 10.1002/polb.10642
Google Scholar
[5]
A. Kahn, W. Zhao, W. Gao, H. Vázquez, F. Flores, Doping-induced realignment of molecular levels at organic–organic heterojunctions, Chemical physics. 325(1) (2006) 129-137.
DOI: 10.1016/j.chemphys.2005.09.015
Google Scholar
[6]
G. Zhang, Y. Zheng, B. Wang, Dissimilar-electrodes-induced asymmetric characteristic and diode effect of current transport in zinc oxide tunnel junctions, J. of Applied Physics. [online]. 114(4) (2013).
DOI: 10.1063/1.4816796
Google Scholar
[7]
J. Li, Z. H. Zhang, G. Kwong, W. Tian, Z. Q. Fan, X. Q. Deng, A new exploration on the substantial improvement of rectifying behaviors for a donor–acceptor molecular diode by graphene electrodes, Carbon. [online]. 61 (2013).
DOI: 10.1016/j.carbon.2013.05.006
Google Scholar
[8]
J. C. Li, X. Gong, Diode rectification and negative differential resistance of dipyrimidinyl–diphenyl molecular junctions, Organic Electronics. [online]. 14(10) (2013).
DOI: 10.1016/j.orgel.2013.06.014
Google Scholar
[9]
A. Zienert, J. Schuster, R, Streiter, T. Gessner, Transport in carbon nanotubes: Contact models and size effects, Physica Status Solidi B. [online]. 247(11‐12) (2010).
DOI: 10.1002/pssb.201000178
Google Scholar
[10]
V. Renugopalakrishnan, G. Madrid, G. Cuevas, A. T. Hagler, Density functional studies of molecular structures of N-methyl formamide, N, N-dimethyl formamide, and N, N-dimethyl acetamide, J. of Chemical Sciences. 112(1) (2000) 35-42.
DOI: 10.1007/bf02704298
Google Scholar
[11]
S. S. Chauhan, P. Srivastava, A. K. Shrivastav, Electronic and transport properties of boron and nitrogen doped graphene nanoribbons: an ab initio approach, Applied Nanoscience. [online]. 4(4) (2013).
DOI: 10.1007/s13204-013-0220-2
Google Scholar
[12]
K. Stokbro, First-principles modeling of electron transport, J. of Physics: Condensed Matter. 20(6) (2008).
Google Scholar
[13]
A. Mahmoud, P. Lugli, First-Principles Study of a Novel Molecular Rectifier, IEEE Transactions on Nanotechnology. [online]. 12(5) (2013) 719-724. Available: http: /ieeexplore. ieee. org/xpl/articleDetails. jsp?arnumber=6548089.
DOI: 10.1109/tnano.2013.2271453
Google Scholar
[14]
P. Bai, K. T. Lam, E. Li, K. K. F. Chang, A Comprehensive Atomic Study of Carbon Nanotube Schottky Diode Using First Principles Approach, Proceedings of IEEE Int. Electron Devices Meeting, Washington, DC, USA. (2007) 749-752.
DOI: 10.1109/iedm.2007.4419055
Google Scholar
[15]
Y. Xu, C. Fang, B. Cui, G. Ji, Y. Zhai, D. Liu, Gated electronic currents modulation and designs of logic gates with single molecular field effect transistors, Applied Physics Letters. [online]. 99(4) (2011).
DOI: 10.1063/1.3615691
Google Scholar
[16]
M. Zeng, L. Shen, H. Su, C. Zhang, Y. Feng, Graphene-based spin logic gates, Applied Physics Letters. [online]. 98(9) (2011). Available: http: /scitation. aip. org/content/aip/journal/apl/98/9/10. 1063/1. 3562320.
DOI: 10.1063/1.3562320
Google Scholar
[17]
D. DeBrincat, O. Keers, J. E. McGrady, Can heterometallic 1-dimensional chains support current rectification?, Chemical Communications. 49(80) (2013) 9116-9118.
DOI: 10.1039/c3cc45063e
Google Scholar
[18]
A. Sengupta, R. K. Ghosh, S. Mahapatra, Performance Analysis of Strained Monolayer MoS2 MOSFET, IEEE Transactions on Electron Devices. [online]. 60(9) (2013).
DOI: 10.1109/ted.2013.2273456
Google Scholar
[19]
A. Sengupta, S. Mahapatra, Performance limits of transition metal dichalcogenide (MX2) nanotube surround gate ballistic field effect transistors, Journal of Applied Physics. [online]. 113(19) (2013).
DOI: 10.1063/1.4805059
Google Scholar
[20]
E. Nadimi, P. Planitz, R. Ottking, M. Schreiber, C. Radehaus, Single and Multiple Oxygen Vacancies in Ultrathin Gate Dielectric and Their Influence on the Leakage Current: An Ab Initio Investigation, IEEE Electron Device Letters. [online]. 31(8) (2010).
DOI: 10.1109/led.2010.2051013
Google Scholar
[21]
R. K. Ghosh, S. Mahapatra, Proposal for Graphene-Boron Nitride Heterobilayer-Based Tunnel FET, IEEE Transactions on Nanotechnology. [online]. 12(5) (2013) 665-667. Available: http: /ieeexplore. ieee. org/xpl/articleDetails. jsp?arnumber=6557524.
DOI: 10.1109/tnano.2013.2272739
Google Scholar
[22]
A. Mahmoud, P. Lugli, Transport characterization of a gated molecular device with negative differential resistance, Presented at 12th IEEE Conference on Nanotechnology. [online]. (2012).
DOI: 10.1109/nano.2012.6321941
Google Scholar
[23]
K. K. Saha, B. K. Nikolić, Negative differential resistance in graphene-nanoribbon–carbon-nanotube crossbars: a first-principles multiterminal quantum transport study, Journal of Computational Electronics. 12(4) (2013) 542-552.
DOI: 10.1007/s10825-013-0534-z
Google Scholar
[24]
D. Valencia, J. Q. Lu, J. Wu, F. Liu, F. Zhai, Y. J. Jiang, Electronic transmission in graphene suppressed by interlayer interference, AIP Advances. 3(10) (2013).
DOI: 10.1063/1.4827022
Google Scholar
[25]
A. Zienert, J. Schuster, T. Gessner, Comparison of quantum mechanical methods for the simulation of electronic transport through carbon nanotubes, Microelectronic Engineering. 106 (2013) 100-105.
DOI: 10.1016/j.mee.2012.12.018
Google Scholar
[26]
G. P. Tang, J. C. Zhou, Z. H. Zhang, X. Q. Deng, Z. Q. Fan, A theoretical investigation on the possible improvement of spin-filter effects by an electric field for a zigzag graphene nanoribbon with a line defect, Carbon. 60 (2013) 94-101.
DOI: 10.1016/j.carbon.2013.04.002
Google Scholar
[27]
S. M. Kang, Y. Leblebici, MOS Transistor in CMOS Digital Integrated Circuits Analysis & Design, third ed., McGraw Hill, USA, 2002, 114-136.
Google Scholar
[28]
S. S. Naik, V. R. Reddy, Temperature dependency and current transport mechanisms of Pd/V/n-type InP schottky rectifiers, Adv. Materials Letters. 3(3) (2012) 188-196.
DOI: 10.5185/amlett.2012.1316
Google Scholar
[29]
D. Venkateshvaran, A. J. Kronemeijer, J. Moriarty, D. Emin, H. Sirringhaus, Field-effect modulated Seebeck coefficient measurements in an organic polymer using a microfabricated on-chip architecture, APL Mat. 2(3) (2014).
DOI: 10.1063/1.4867224
Google Scholar