A First Principle Approach to Design Gated p-i-n Nanodiode

Article Preview

Abstract:

Thanks to the world of nanotechnology; it is possible to build molecular nanodevices. In this paper, GaAs single nanowire molecular p-i-n diode is designed and its electronic transmission properties, Local Device Density of States, Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital plot and Negative Differential Resistance property are investigated from the atomic perspective using first principle Density Functional Theory-Non Equilibrium Green Function approach. This molecular structure is built and simulated in Virtual nanoLab atmosphere. The Negative Differential Resistance of the device is revealed through the current-voltage characteristics of the nanowire. The band-to-band tunneling current is observed for this p-i-n junction nanodiode. Thermal coefficient, Peltier co-efficient, and Seebeck coefficients at different gate bias are obtained. This nanowire GaAs molecular diode is attractive for the next generation low power nanodevice design. Electrical doping effect has been introduced in the wire without adding unambiguous dopants to the molecular wire.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-30

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Gao, A. Kahn, Electrical doping: the impact on interfaces of π-conjugated molecular films, J. of Physics: Condensed Matter. 15(38) (2003) S2757.

DOI: 10.1088/0953-8984/15/38/014

Google Scholar

[2] Serge L. Rudaz, U.S. Patent 5, 729, 029. (1998).

Google Scholar

[3] S. Yu, J. Frisch, A. Opitz, E. Cohen, M. Bendikov, N. Koch, I. Salzmann, Effect of molecular electrical doping on polyfuran based photovoltaic cells, Applied Physics Letters. 106(20) (2015) 203301.

DOI: 10.1063/1.4921484

Google Scholar

[4] A. Kahn, N. Koch, W. Gao, Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films, J. of Polymer Science Part B: Polymer Physics. 41(21) (2003) 2529-2548.

DOI: 10.1002/polb.10642

Google Scholar

[5] A. Kahn, W. Zhao, W. Gao, H. Vázquez, F. Flores, Doping-induced realignment of molecular levels at organic–organic heterojunctions, Chemical physics. 325(1) (2006) 129-137.

DOI: 10.1016/j.chemphys.2005.09.015

Google Scholar

[6] G. Zhang, Y. Zheng, B. Wang, Dissimilar-electrodes-induced asymmetric characteristic and diode effect of current transport in zinc oxide tunnel junctions, J. of Applied Physics. [online]. 114(4) (2013).

DOI: 10.1063/1.4816796

Google Scholar

[7] J. Li, Z. H. Zhang, G. Kwong, W. Tian, Z. Q. Fan, X. Q. Deng, A new exploration on the substantial improvement of rectifying behaviors for a donor–acceptor molecular diode by graphene electrodes, Carbon. [online]. 61 (2013).

DOI: 10.1016/j.carbon.2013.05.006

Google Scholar

[8] J. C. Li, X. Gong, Diode rectification and negative differential resistance of dipyrimidinyl–diphenyl molecular junctions, Organic Electronics. [online]. 14(10) (2013).

DOI: 10.1016/j.orgel.2013.06.014

Google Scholar

[9] A. Zienert, J. Schuster, R, Streiter, T. Gessner, Transport in carbon nanotubes: Contact models and size effects, Physica Status Solidi B. [online]. 247(11‐12) (2010).

DOI: 10.1002/pssb.201000178

Google Scholar

[10] V. Renugopalakrishnan, G. Madrid, G. Cuevas, A. T. Hagler, Density functional studies of molecular structures of N-methyl formamide, N, N-dimethyl formamide, and N, N-dimethyl acetamide, J. of Chemical Sciences. 112(1) (2000) 35-42.

DOI: 10.1007/bf02704298

Google Scholar

[11] S. S. Chauhan, P. Srivastava, A. K. Shrivastav, Electronic and transport properties of boron and nitrogen doped graphene nanoribbons: an ab initio approach, Applied Nanoscience. [online]. 4(4) (2013).

DOI: 10.1007/s13204-013-0220-2

Google Scholar

[12] K. Stokbro, First-principles modeling of electron transport, J. of Physics: Condensed Matter. 20(6) (2008).

Google Scholar

[13] A. Mahmoud, P. Lugli, First-Principles Study of a Novel Molecular Rectifier, IEEE Transactions on Nanotechnology. [online]. 12(5) (2013) 719-724. Available: http: /ieeexplore. ieee. org/xpl/articleDetails. jsp?arnumber=6548089.

DOI: 10.1109/tnano.2013.2271453

Google Scholar

[14] P. Bai, K. T. Lam, E. Li, K. K. F. Chang, A Comprehensive Atomic Study of Carbon Nanotube Schottky Diode Using First Principles Approach, Proceedings of IEEE Int. Electron Devices Meeting, Washington, DC, USA. (2007) 749-752.

DOI: 10.1109/iedm.2007.4419055

Google Scholar

[15] Y. Xu, C. Fang, B. Cui, G. Ji, Y. Zhai, D. Liu, Gated electronic currents modulation and designs of logic gates with single molecular field effect transistors, Applied Physics Letters. [online]. 99(4) (2011).

DOI: 10.1063/1.3615691

Google Scholar

[16] M. Zeng, L. Shen, H. Su, C. Zhang, Y. Feng, Graphene-based spin logic gates, Applied Physics Letters. [online]. 98(9) (2011). Available: http: /scitation. aip. org/content/aip/journal/apl/98/9/10. 1063/1. 3562320.

DOI: 10.1063/1.3562320

Google Scholar

[17] D. DeBrincat, O. Keers, J. E. McGrady, Can heterometallic 1-dimensional chains support current rectification?, Chemical Communications. 49(80) (2013) 9116-9118.

DOI: 10.1039/c3cc45063e

Google Scholar

[18] A. Sengupta, R. K. Ghosh, S. Mahapatra, Performance Analysis of Strained Monolayer MoS2 MOSFET, IEEE Transactions on Electron Devices. [online]. 60(9) (2013).

DOI: 10.1109/ted.2013.2273456

Google Scholar

[19] A. Sengupta, S. Mahapatra, Performance limits of transition metal dichalcogenide (MX2) nanotube surround gate ballistic field effect transistors, Journal of Applied Physics. [online]. 113(19) (2013).

DOI: 10.1063/1.4805059

Google Scholar

[20] E. Nadimi, P. Planitz, R. Ottking, M. Schreiber, C. Radehaus, Single and Multiple Oxygen Vacancies in Ultrathin Gate Dielectric and Their Influence on the Leakage Current: An Ab Initio Investigation, IEEE Electron Device Letters. [online]. 31(8) (2010).

DOI: 10.1109/led.2010.2051013

Google Scholar

[21] R. K. Ghosh, S. Mahapatra, Proposal for Graphene-Boron Nitride Heterobilayer-Based Tunnel FET, IEEE Transactions on Nanotechnology. [online]. 12(5) (2013) 665-667. Available: http: /ieeexplore. ieee. org/xpl/articleDetails. jsp?arnumber=6557524.

DOI: 10.1109/tnano.2013.2272739

Google Scholar

[22] A. Mahmoud, P. Lugli, Transport characterization of a gated molecular device with negative differential resistance, Presented at 12th IEEE Conference on Nanotechnology. [online]. (2012).

DOI: 10.1109/nano.2012.6321941

Google Scholar

[23] K. K. Saha, B. K. Nikolić, Negative differential resistance in graphene-nanoribbon–carbon-nanotube crossbars: a first-principles multiterminal quantum transport study, Journal of Computational Electronics. 12(4) (2013) 542-552.

DOI: 10.1007/s10825-013-0534-z

Google Scholar

[24] D. Valencia, J. Q. Lu, J. Wu, F. Liu, F. Zhai, Y. J. Jiang, Electronic transmission in graphene suppressed by interlayer interference, AIP Advances. 3(10) (2013).

DOI: 10.1063/1.4827022

Google Scholar

[25] A. Zienert, J. Schuster, T. Gessner, Comparison of quantum mechanical methods for the simulation of electronic transport through carbon nanotubes, Microelectronic Engineering. 106 (2013) 100-105.

DOI: 10.1016/j.mee.2012.12.018

Google Scholar

[26] G. P. Tang, J. C. Zhou, Z. H. Zhang, X. Q. Deng, Z. Q. Fan, A theoretical investigation on the possible improvement of spin-filter effects by an electric field for a zigzag graphene nanoribbon with a line defect, Carbon. 60 (2013) 94-101.

DOI: 10.1016/j.carbon.2013.04.002

Google Scholar

[27] S. M. Kang, Y. Leblebici, MOS Transistor in CMOS Digital Integrated Circuits Analysis & Design, third ed., McGraw Hill, USA, 2002, 114-136.

Google Scholar

[28] S. S. Naik, V. R. Reddy, Temperature dependency and current transport mechanisms of Pd/V/n-type InP schottky rectifiers, Adv. Materials Letters. 3(3) (2012) 188-196.

DOI: 10.5185/amlett.2012.1316

Google Scholar

[29] D. Venkateshvaran, A. J. Kronemeijer, J. Moriarty, D. Emin, H. Sirringhaus, Field-effect modulated Seebeck coefficient measurements in an organic polymer using a microfabricated on-chip architecture, APL Mat. 2(3) (2014).

DOI: 10.1063/1.4867224

Google Scholar