[1]
H. Dai, E.W. Wong, C.M. Lieber, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes, Science 272 (1996) 523-526.
DOI: 10.1126/science.272.5261.523
Google Scholar
[2]
C. Niu, E.K. Sichel, R. Hoch, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett. 70 (1997) 1480-1482.
DOI: 10.1063/1.118568
Google Scholar
[3]
Y. Siato, K. Hamaguchi, K. Hata, Conical beams from open nanotubes, 389 (1997) 554-555.
Google Scholar
[4]
D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363 (1993) 605–607.
DOI: 10.1038/363605a0
Google Scholar
[5]
G. Cao, Nano Structures and Nanomaterials, Synthesis, Properties and Applications, Imperial College Press, London, (2004).
Google Scholar
[6]
L. Forro, J.P. Salvetat, J.M. Bonard, R. Basca, N.H. Thomson, S. Garaj, L. Thien-Nga, R. Gaa l, A. Kulik, B. Ruzicka, L. Degiorgi, A. Bachtold, C. Schonenberger, S. Pekker, K. Hernadi, Science and Application of Nanotubes (1999) 297.
DOI: 10.1007/0-306-47098-5_22
Google Scholar
[7]
W.A. Goddard, D.W. Brenner, S.E. Lyshevski, G.J. Iafrate (Eds. ), Handbook of Nanoscience, Engineering, and Technology, CRC Press, (2002).
Google Scholar
[8]
M. Rahmandoust and A. Öchsner. Influence of structural imperfections and doping on the mechanical properties of single-walled carbon nanotubes. Journal of Nano Research 6 (2009) 185-196.
DOI: 10.4028/www.scientific.net/jnanor.6.185
Google Scholar
[9]
Z. Ebrahim Zadeh, et al. The effect of vacancy defects and temperature on fundamental frequency of single walled carbon nanotubes. Computational Materials Science 63 (2012) 12-19.
DOI: 10.1016/j.commatsci.2012.05.045
Google Scholar
[10]
A. Ghavamian and A. Öchsner. Numerical investigation on the influence of defects on the buckling behavior of single-and multi-walled carbon nanotubes. Physica E: Low-dimensional Systems and Nanostructures 46 (2012) 241-249.
DOI: 10.1016/j.physe.2012.08.002
Google Scholar
[11]
S. Imani Yengejeh, et al., Numerical modeling of eigenmodes and eigenfrequencies of hetero-junction carbon nanotubes with pentagon–heptagon pair defects, Computational Materials Science 92 (2014) 76-83.
DOI: 10.1016/j.commatsci.2014.05.015
Google Scholar
[12]
S. Imani Yengejeh, et al. Numerical simulation of the vibration behavior of curved carbon nanotubes. Advances in Materials Science and Engineering 2014. http: /dx. doi. org/10. 1155/2014/815340.
DOI: 10.1155/2014/815340
Google Scholar
[13]
S. Imani Yengejeh and A. Öchsner. Influence of structural imperfections-twisting and distortion-on the vibrational behavior of carbon nanotubes. Journal of Nanoengineering and Nanosystems (2015) 1-9.
DOI: 10.1177/1740349915579713
Google Scholar
[14]
C. Li, T.W. Chou, A Structural Mechanics Approach for the Analysis of Carbon Nanotubes, International Journal of Solids and Structures 40 (2003) 2487–2499.
DOI: 10.1016/s0020-7683(03)00056-8
Google Scholar
[15]
C.W.S. To, Bending and shear moduli of single-walled carbon nanotubes, Finite Elem. Anal. Des. 42 (2006) 404–413.
DOI: 10.1016/j.finel.2005.08.004
Google Scholar
[16]
M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes, Carbon 33 (1995) 883–891.
DOI: 10.1016/0008-6223(95)00017-8
Google Scholar
[17]
Z. Kang, M. Li, Q. Tang, Buckling behavior of carbon nanotube-based intramolecular junctions under compression: Molecular dynamics simulation and finite element analysis, Computational Materials Science 50 (2010) 253–259.
DOI: 10.1016/j.commatsci.2010.08.011
Google Scholar