[1]
C.N.R. Rao, B.C. Satishkumar, and A. Govindaraj, Zirconia Nanotubes. Chem. Commun. 16 (1997) 1581-1582.
DOI: 10.1039/a701354j
Google Scholar
[2]
G. Cao, Synthesis, Properties and Applications. Imperial college press, London (2004).
Google Scholar
[3]
G. Garnweitner, Zirconia Nanomaterials: Synthesis and Biomedical Application. Nanotechnologies for the Life Sciences (2009).
DOI: 10.1002/9783527610419.ntls0144
Google Scholar
[4]
M. Yada, and Y. Inoue, Synthesis and applications of zirconia and ruthenium oxide nanotubes. Inorganic and Metallic Nanotubular Materials (2010) 117-133.
DOI: 10.1007/978-3-642-03622-4_9
Google Scholar
[5]
C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M. Sung, and H. Shin, Template-Directed Synthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications, Chem. Mats., 20 (3), (2008) 756-767.
DOI: 10.1021/cm702138c
Google Scholar
[6]
L. Guo, J. Zhao, X. Wang, X. Xu, H. Liu and Y. Li, Structure and Bioactivity of Zirconia nanotube Arrays Fabricated by Anodization. International Journal of Applied Ceramic Technology 6(5) (2009) 636-641.
DOI: 10.1111/j.1744-7402.2008.02305.x
Google Scholar
[7]
R.A. Lucky, and P.A. Charpentier, N-doped ZrO2/TiO2 bimetallic materials synthesized in supercritical CO2: Morphology and Photocatalytic Activity. Applied Catalysis B: Environmental, 96(3) (2010) 516-523.
DOI: 10.1016/j.apcatb.2010.03.013
Google Scholar
[8]
C. Yan, J. Liu, F. Liu, J. Wu, K. Gao and D. Xue, Tube Formation in Nanoscale Materials. Nanoscale Research Letters 3 (2008) 473-480.
DOI: 10.1007/s11671-008-9193-6
Google Scholar
[9]
Z. Lockman, S. Ismail, G. Kawamura, and A. Matsuda, Formation of Zirconia and Titania Nanotubes in Fluorine Contained Glycerol Electrochemical Bath. Defect and Diffusion Forum 76 (2011) 312-315.
DOI: 10.4028/www.scientific.net/ddf.312-315.76
Google Scholar
[10]
L. Li, D. Yan, J. Lei, J. He, S. Wu, and F. Pan, Fast Fabrication of Highly Regular and Ordered ZrO2 Nano- tubes. Materials Letters 65 (2011) 1434-1437.
DOI: 10.1016/j.matlet.2011.02.025
Google Scholar
[11]
F. Davar, A. Hassankhani, and M.R. Loghman-Estarki, Controllable Synthesis of Metastable Tetragonal Zirconia Nanocrystals using Citric Acid Assisted Sol–Gel Method. Ceramics International, 39(3) (2013) 2933-2941.
DOI: 10.1016/j.ceramint.2012.09.067
Google Scholar
[12]
E. Mohammadpour, and M. Awang, App. Phy. A, 106(3) (2012) 581-588.
Google Scholar
[13]
C.W. Fan, J.H. Huang, C.B. Hwu and Y.Y. Liu Mechanical Properties of Single-Walled Carbon Nanotubes- A Finite Element Approach. Advanced Materials Research, vol. 33 no. 37 (2008) 937-942.
DOI: 10.4028/www.scientific.net/amr.33-37.937
Google Scholar
[14]
T. Lorenz, D. Teich, J.O. Joswig and G. Seifert, Theoretical Study of the Mechanical Behavior of Individual TiS2 and MoS2 Nanotubes, Journal of Physical Chemistry C, vol. 116, no. 21 (2012) 11714-11721.
DOI: 10.1021/jp300709w
Google Scholar
[15]
L. Guimaraes, A.N. Enyashin, G. Seifert, and H.A. Duarte, Structural, Electronic, and Mechanical Properties of Single-Walled Halloysite Nanotube Models. The Journal of Physical Chemistry C, 26 (2010) 11358-11363.
DOI: 10.1021/jp100902e
Google Scholar
[16]
A.V. Bandura, and R.A. Evarestov, Ab initio structure modeling of ZrO2 Nanosheets and Single-Wall Nanotubes. Computational Materials Science, 65, (2012) 395-405.
DOI: 10.1016/j.commatsci.2012.08.001
Google Scholar
[17]
I.D. Muhammad, M. Awang, O. Mamat, and K.Z.K. Shaari, Estimating Young's Modulus of Single-Walled Zirconia Nanotubes Using Nonlinear Finite Element Modeling. Journal of Nanomaterials, (2015).
DOI: 10.1155/2015/157423
Google Scholar
[18]
X. Guo, and T. Zhang, A Study on the Bending Stiffness of Single-Walled Carbon Nanotubes and Related Issues. Journal of the Mechanics and Physics of Solids, 58(3), (2010) 428-443.
DOI: 10.1016/j.jmps.2009.11.001
Google Scholar
[19]
M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson, Exceptionally high Young's modulus observed for individual nanotubes. Nature 381 (1996) 678–680.
DOI: 10.1038/381678a0
Google Scholar
[20]
E.W. Wong, P.E. Sheehan, C.M. Lieber, Nano Beam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 277 (5334), (1997) 1971–(1975).
DOI: 10.1126/science.277.5334.1971
Google Scholar
[21]
A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos and M.M. J Treacy, Young's Modulus of Single-Walled Nanotubes. Phys. Rev. B 58 (20), (1998) 14013–14019.
DOI: 10.1103/physrevb.58.14013
Google Scholar
[22]
R. Ansari, S. Rouhi, M. Mirnezhad and F. Sadeghiyeh, App. Phy. A, 112(3) (2013) 767-774.
Google Scholar
[23]
G. Lewis, and C. Catlow, J. Phy. C: Solid State Phy. 18(6) (1985) 1149-1155.
Google Scholar
[24]
Y. Chang, H. Wang, Q. Zhu, P. Luo, and S. Dong, J. Adv. Ceram., 2(1) (2013) 21-25.
Google Scholar
[25]
C. Wang, Multiscale modeling and simulation of Nanocrystalline zirconium oxide. PhD Thesis, Mechanical Engineering Department, University of Nebraska (2009).
Google Scholar
[26]
I.D. Muhammad, and M. Awang, App. Mecha. & Mate. 446 (2014) 151-157.
Google Scholar
[27]
J.D. Gale, GULP: Capabilities and Prospects, Zeitschrift für Kristallographie, vol. 220 2005 552-554.
DOI: 10.1524/zkri.220.5.552.65070
Google Scholar
[28]
M.D. Segall, P.J. Lindan, M.A. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark and M.C. Payne, First-principles simulation: Ideas, Illustrations and the CASTEP Code, Journal of Physics: Condensed Matter vol. 14 no. 11 (2002) 2717.
DOI: 10.1088/0953-8984/14/11/301
Google Scholar
[29]
I.D. Muhammad, M. Awang, O. Mamat and K.Z.K. Shaari First-Principles Calculations of the Structural, Mechanical and Thermodynamics Properties of Cubic Zirconia. World Journal of Nano Science and Engineering, vol. 4 (2014) 97-103.
DOI: 10.4236/wjnse.2014.42013
Google Scholar
[30]
I.D. Muhammad and M. Awang Extracting the Atomic Coordinates and Connectivity of Zirconia Nanotubes from PDB Files for Modelling in ANSYS. Advances in Nanoparticles, no. 3 (2014) 92-98.
DOI: 10.4236/anp.2014.33013
Google Scholar
[31]
M. Zakeri and M. Shayanmehr, On the Mechanical Properties of Chiral Carbon Nanotubes. Journal of Ultrafine Grained and Nanostructured Materials, vol. 46, no. 1 (2013) 1-9.
Google Scholar
[32]
J.H. Lee and B.S. Lee, Modal Analysis of Carbon Nanotubes and Nanocones using FEM. Computational Materials Science, vol. 51, no. 1 (2012) 30-42.
DOI: 10.1016/j.commatsci.2011.06.041
Google Scholar