Modeling the Bending Behavior of Single-Walled Cubic Zirconia Nanotubes

Article Preview

Abstract:

The bending behavior of single-walled cubic zirconia nanotubes (CZNTs) is studied in this paper based on a three-dimensional finite element analysis with molecular bonds modeled as structural beam elements and positioned at the joints of beams as substitute of atoms. In order to simulate the bending effect of CZNTs, the free-end is exposed to varying transverse displacements and the maximum force along the cross section at the fixed end is recorded to estimate the bending elastic modulus. The result obtained indicates that the bending elastic modulus of CZNTs depends on chirality and magnitude of applied transverse displacement. The simulated bending modulus of CZNTs fluctuates with the optimum value obtained from the zigzag configuration when 0.5 – 1.0 nm transverse displacement was applied. The results follows similar trend with what was obtained in other studies for carbon nanotubes but at comparatively lesser magnitude.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

88-95

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.N.R. Rao, B.C. Satishkumar, and A. Govindaraj, Zirconia Nanotubes. Chem. Commun. 16 (1997) 1581-1582.

DOI: 10.1039/a701354j

Google Scholar

[2] G. Cao, Synthesis, Properties and Applications. Imperial college press, London (2004).

Google Scholar

[3] G. Garnweitner, Zirconia Nanomaterials: Synthesis and Biomedical Application. Nanotechnologies for the Life Sciences (2009).

DOI: 10.1002/9783527610419.ntls0144

Google Scholar

[4] M. Yada, and Y. Inoue, Synthesis and applications of zirconia and ruthenium oxide nanotubes. Inorganic and Metallic Nanotubular Materials (2010) 117-133.

DOI: 10.1007/978-3-642-03622-4_9

Google Scholar

[5] C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M. Sung, and H. Shin, Template-Directed Synthesis of Oxide Nanotubes: Fabrication, Characterization, and Applications, Chem. Mats., 20 (3), (2008) 756-767.

DOI: 10.1021/cm702138c

Google Scholar

[6] L. Guo, J. Zhao, X. Wang, X. Xu, H. Liu and Y. Li, Structure and Bioactivity of Zirconia nanotube Arrays Fabricated by Anodization. International Journal of Applied Ceramic Technology 6(5) (2009) 636-641.

DOI: 10.1111/j.1744-7402.2008.02305.x

Google Scholar

[7] R.A. Lucky, and P.A. Charpentier, N-doped ZrO2/TiO2 bimetallic materials synthesized in supercritical CO2: Morphology and Photocatalytic Activity. Applied Catalysis B: Environmental, 96(3) (2010) 516-523.

DOI: 10.1016/j.apcatb.2010.03.013

Google Scholar

[8] C. Yan, J. Liu, F. Liu, J. Wu, K. Gao and D. Xue, Tube Formation in Nanoscale Materials. Nanoscale Research Letters 3 (2008) 473-480.

DOI: 10.1007/s11671-008-9193-6

Google Scholar

[9] Z. Lockman, S. Ismail, G. Kawamura, and A. Matsuda, Formation of Zirconia and Titania Nanotubes in Fluorine Contained Glycerol Electrochemical Bath. Defect and Diffusion Forum 76 (2011) 312-315.

DOI: 10.4028/www.scientific.net/ddf.312-315.76

Google Scholar

[10] L. Li, D. Yan, J. Lei, J. He, S. Wu, and F. Pan, Fast Fabrication of Highly Regular and Ordered ZrO2 Nano- tubes. Materials Letters 65 (2011) 1434-1437.

DOI: 10.1016/j.matlet.2011.02.025

Google Scholar

[11] F. Davar, A. Hassankhani, and M.R. Loghman-Estarki, Controllable Synthesis of Metastable Tetragonal Zirconia Nanocrystals using Citric Acid Assisted Sol–Gel Method. Ceramics International, 39(3) (2013) 2933-2941.

DOI: 10.1016/j.ceramint.2012.09.067

Google Scholar

[12] E. Mohammadpour, and M. Awang, App. Phy. A, 106(3) (2012) 581-588.

Google Scholar

[13] C.W. Fan, J.H. Huang, C.B. Hwu and Y.Y. Liu Mechanical Properties of Single-Walled Carbon Nanotubes- A Finite Element Approach. Advanced Materials Research, vol. 33 no. 37 (2008) 937-942.

DOI: 10.4028/www.scientific.net/amr.33-37.937

Google Scholar

[14] T. Lorenz, D. Teich, J.O. Joswig and G. Seifert, Theoretical Study of the Mechanical Behavior of Individual TiS2 and MoS2 Nanotubes, Journal of Physical Chemistry C, vol. 116, no. 21 (2012) 11714-11721.

DOI: 10.1021/jp300709w

Google Scholar

[15] L. Guimaraes, A.N. Enyashin, G. Seifert, and H.A. Duarte, Structural, Electronic, and Mechanical Properties of Single-Walled Halloysite Nanotube Models. The Journal of Physical Chemistry C, 26 (2010) 11358-11363.

DOI: 10.1021/jp100902e

Google Scholar

[16] A.V. Bandura, and R.A. Evarestov, Ab initio structure modeling of ZrO2 Nanosheets and Single-Wall Nanotubes. Computational Materials Science, 65, (2012) 395-405.

DOI: 10.1016/j.commatsci.2012.08.001

Google Scholar

[17] I.D. Muhammad, M. Awang, O. Mamat, and K.Z.K. Shaari, Estimating Young's Modulus of Single-Walled Zirconia Nanotubes Using Nonlinear Finite Element Modeling. Journal of Nanomaterials, (2015).

DOI: 10.1155/2015/157423

Google Scholar

[18] X. Guo, and T. Zhang, A Study on the Bending Stiffness of Single-Walled Carbon Nanotubes and Related Issues. Journal of the Mechanics and Physics of Solids, 58(3), (2010) 428-443.

DOI: 10.1016/j.jmps.2009.11.001

Google Scholar

[19] M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson, Exceptionally high Young's modulus observed for individual nanotubes. Nature 381 (1996) 678–680.

DOI: 10.1038/381678a0

Google Scholar

[20] E.W. Wong, P.E. Sheehan, C.M. Lieber, Nano Beam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 277 (5334), (1997) 1971–(1975).

DOI: 10.1126/science.277.5334.1971

Google Scholar

[21] A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos and M.M. J Treacy, Young's Modulus of Single-Walled Nanotubes. Phys. Rev. B 58 (20), (1998) 14013–14019.

DOI: 10.1103/physrevb.58.14013

Google Scholar

[22] R. Ansari, S. Rouhi, M. Mirnezhad and F. Sadeghiyeh, App. Phy. A, 112(3) (2013) 767-774.

Google Scholar

[23] G. Lewis, and C. Catlow, J. Phy. C: Solid State Phy. 18(6) (1985) 1149-1155.

Google Scholar

[24] Y. Chang, H. Wang, Q. Zhu, P. Luo, and S. Dong, J. Adv. Ceram., 2(1) (2013) 21-25.

Google Scholar

[25] C. Wang, Multiscale modeling and simulation of Nanocrystalline zirconium oxide. PhD Thesis, Mechanical Engineering Department, University of Nebraska (2009).

Google Scholar

[26] I.D. Muhammad, and M. Awang, App. Mecha. & Mate. 446 (2014) 151-157.

Google Scholar

[27] J.D. Gale, GULP: Capabilities and Prospects, Zeitschrift für Kristallographie, vol. 220 2005 552-554.

DOI: 10.1524/zkri.220.5.552.65070

Google Scholar

[28] M.D. Segall, P.J. Lindan, M.A. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark and M.C. Payne, First-principles simulation: Ideas, Illustrations and the CASTEP Code, Journal of Physics: Condensed Matter vol. 14 no. 11 (2002) 2717.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[29] I.D. Muhammad, M. Awang, O. Mamat and K.Z.K. Shaari First-Principles Calculations of the Structural, Mechanical and Thermodynamics Properties of Cubic Zirconia. World Journal of Nano Science and Engineering, vol. 4 (2014) 97-103.

DOI: 10.4236/wjnse.2014.42013

Google Scholar

[30] I.D. Muhammad and M. Awang Extracting the Atomic Coordinates and Connectivity of Zirconia Nanotubes from PDB Files for Modelling in ANSYS. Advances in Nanoparticles, no. 3 (2014) 92-98.

DOI: 10.4236/anp.2014.33013

Google Scholar

[31] M. Zakeri and M. Shayanmehr, On the Mechanical Properties of Chiral Carbon Nanotubes. Journal of Ultrafine Grained and Nanostructured Materials, vol. 46, no. 1 (2013) 1-9.

Google Scholar

[32] J.H. Lee and B.S. Lee, Modal Analysis of Carbon Nanotubes and Nanocones using FEM. Computational Materials Science, vol. 51, no. 1 (2012) 30-42.

DOI: 10.1016/j.commatsci.2011.06.041

Google Scholar