[1]
U. Wahlström, L. Hultman, J. -E. Sundgren, F. Adibi, I. Petrov and J.E. Greene, Crystal-growth and microstructure of polycrystalline Ti1-xAlxN alloy-films deposited by ultra-high vacuum dual target magnetron sputtering, Thin Solid Films 235 (1993).
DOI: 10.1016/0040-6090(93)90244-j
Google Scholar
[2]
L.A. Donohue, I.J. Smith, W. -D. Münz, I. Ptrov, J.E. Greene, Miccrostructure and oxidation resistance of Ti1-x-y-zAlxCryYzN layers grown by combined steered arc/unbalanced magnetron- sputter deposition, Surf. Coat. Technol. 94-95 (1997) 315-321.
DOI: 10.1016/s0257-8972(97)00249-1
Google Scholar
[3]
O. Knotek, M. Bohmer, and T. Leyendecker, On structure and properties of sputtered Ti and Al based hard compound films, J. Vac. Sci. Technol. A 4(6) (1986) 2695-2700.
DOI: 10.1116/1.573708
Google Scholar
[4]
W. -D. Münz, Titanium aluminum nititride films: A new alternative to TiN coatings, J. Vac. Sci. Technol. A 4 (1986) 2717-2725.
Google Scholar
[5]
H. Amini Mashhadi, N. Wada, R. Tomoshige, P. Manikandan and K. Hokamoto, Fabrication of bulk AlN–TiN nanocomposite by reactive ball milling and underwater shock consolidation technique, Ceramics International 37 (2011) 1747-1754.
DOI: 10.1016/j.ceramint.2011.01.036
Google Scholar
[6]
A. Kimura, H. Hasegawa, K. Yamada and T. Suzuki, Metastable Ti1-xAlxN films with different Al content, J. Mater. Sci. Lett. 19 (2000) 601-602.
Google Scholar
[7]
S. PalDey, S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti, Al)N: a review, Mater Sci Engng A 342 (2003) 58-79.
DOI: 10.1016/s0921-5093(02)00259-9
Google Scholar
[8]
Y. Ogino, M. Miki, T. Yamasaki and T. Inuma, Preparation of Ultrafine-Grained TiN and (Ti, Al)N Powders by Mechanical Alloying, Mater. Sci. Forum 88-90 (1992) 795-800.
DOI: 10.4028/www.scientific.net/msf.88-90.795
Google Scholar
[9]
M. Miki, T. Yamasaki and Y. Ogino, Mechanical Alloying of Ti-Al Powder Mixtures under Nitrogen Atmosphere, Mater. Trans. JIM 34 (1993) 952-959.
DOI: 10.2320/matertrans1989.34.952
Google Scholar
[10]
H. Borodianska, T. Ludvinskaya, Y. Sakka, I. Uvarova and O. Vasilkiv, Bulk Ti1-xAlxN Nanocomposite via Spark Plasma Sintering of Nanostructured Ti1-x AlxN-AlN powders, Scripta Materialia 61 (2009) 1020-1023.
DOI: 10.1016/j.scriptamat.2009.08.019
Google Scholar
[11]
F. Neves, F.M. Braz Fernandes and I. Martins, Parametric optimization of Ti–Ni powder mixtures produced by mechanical alloying, J. Alloys. Compd. 509 (2011) 271-274.
DOI: 10.1016/j.jallcom.2010.11.036
Google Scholar
[12]
B.N. Akhgar, M. Pazouki, M. Ranjbar, A. Hosseinnia and R. Salarian, Application of Taguchi method for optimization of synthetic rutile nano-powder preparation from ilmenite concentrate, Eng. Res. Des. Chem. 90 (2012) 220-228.
DOI: 10.1016/j.cherd.2011.07.008
Google Scholar
[13]
K.S. Park, H.G. Kim, Y.H. Kim, C.H. Park and K.D. Kim, The preparation and characterization of NaWO3 particles for heat shielding by Taguchi optimization method, Chem. Eng. Res. Des. 89 (2011) 2389-2395.
DOI: 10.1016/j.cherd.2011.04.008
Google Scholar
[14]
F.L. Zhang, M. Zhu and C.Y. Wang, Parameters optimization in the planetary ball milling of nanostructured tungsten carbide/cobalt powder, Int. J. Refract. Met. 26 (2008) 329-333.
DOI: 10.1016/j.ijrmhm.2007.08.005
Google Scholar
[15]
A. Canakci, F. Erdemir, T. Varol and A. Patir, Determining the effect of process parameters on particle size in mechanical milling using the Taguchi method: Measurement and analysis, Measurment 46 (2013) 3532-3540.
DOI: 10.1016/j.measurement.2013.06.035
Google Scholar
[16]
K. D Kim, S.H. Kim and H. T Kim, Applying the Taguchi method to the optimization for the synthesis of TiO2 nanoparticles by hydrolysis of TEOT in micelles, Colloids Surf. A Vol. 245 (2005) 99-105.
DOI: 10.1016/j.colsurfa.2004.11.033
Google Scholar
[17]
S. Singh, H.S. Shan and P. Kumar, Parametric Optimization of Magnetic-Field-Assisted Abrasive Flow Machining by the Taguchi Method, Qual. Reliab. Eng. Int. 18 (2002) 273-283.
DOI: 10.1002/qre.470
Google Scholar
[18]
P.J. Ross, Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design, second ed., NY: McGraw-Hill Mcgraw-Hill, New York, (1996).
Google Scholar
[19]
S. Alamolhoda, S. Heshmati-Manesh and A. Ataie, Role of intensive milling in mechano-thermal processing of TiAl/Al2O3 nanocomposite, Adv. Powder Technol. 23 (2012) 343-348.
DOI: 10.1016/j.apt.2011.04.014
Google Scholar
[20]
O. Keles, An optimization study on the cementation of silver with copper in nitrate solutions by Taguchi design. Hydrometallurgy 95 (2009) 333-336.
DOI: 10.1016/j.hydromet.2008.07.006
Google Scholar
[21]
M. S. Phadke, Quality Engineering Using Robust Design, first ed., P T R Prentice Hall, New Jersey, (1989).
Google Scholar
[22]
G. Taguchi, S. Chowdhury and Y. Wu, Taguchi's Quality Engineering Handbook, first ed., Wiley-Interscience, New York, (2005).
Google Scholar
[23]
R.K. Roy, Design of Experiments Using the Taguchi Approach, Inc., New York, (2001).
Google Scholar
[24]
H. Lindman, Analysis of variance in experimental design, Springer-Verlag, New York, (1992).
Google Scholar
[25]
R. K. Roy, Primer on the Taguchi Method, Van Nostrand Reinhold, New York, (1990).
Google Scholar