Optimization of High Energy Ball Milling Parameters for Synthesis of Ti1-xAlxN Powder

Article Preview

Abstract:

Taguchi’s method was applied to investigate the effect of the main HEBM parameters: milling time (MT), ball to powder weight ratio (BPWR) and milling speed (MS) on the dissolved AlN fraction in TiN. The settings of HEBM parameters were determined by using the orthogonal experiments array (OA). The as-received and milled powders were characterized by X-ray diffraction (XRD). The optimum milling parameter combination was determined by using the analysis of signal-to-noise (S/N) ratio. According to the analysis of variance (ANOVA) the milling speed is the most effective parameter and the optimal conditions for powder synthesis are: MT 20h, MS 600rpm, BPWR 50:1. The result of the experiment conducted under optimal conditions (AlN was completely dissolved during experiment) confirmed the conclusions of the statistical analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-113

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. Wahlström, L. Hultman, J. -E. Sundgren, F. Adibi, I. Petrov and J.E. Greene, Crystal-growth and microstructure of polycrystalline Ti1-xAlxN alloy-films deposited by ultra-high vacuum dual target magnetron sputtering, Thin Solid Films 235 (1993).

DOI: 10.1016/0040-6090(93)90244-j

Google Scholar

[2] L.A. Donohue, I.J. Smith, W. -D. Münz, I. Ptrov, J.E. Greene, Miccrostructure and oxidation resistance of Ti1-x-y-zAlxCryYzN layers grown by combined steered arc/unbalanced magnetron- sputter deposition, Surf. Coat. Technol. 94-95 (1997) 315-321.

DOI: 10.1016/s0257-8972(97)00249-1

Google Scholar

[3] O. Knotek, M. Bohmer, and T. Leyendecker, On structure and properties of sputtered Ti and Al based hard compound films, J. Vac. Sci. Technol. A 4(6) (1986) 2695-2700.

DOI: 10.1116/1.573708

Google Scholar

[4] W. -D. Münz, Titanium aluminum nititride films: A new alternative to TiN coatings, J. Vac. Sci. Technol. A 4 (1986) 2717-2725.

Google Scholar

[5] H. Amini Mashhadi, N. Wada, R. Tomoshige, P. Manikandan and K. Hokamoto, Fabrication of bulk AlN–TiN nanocomposite by reactive ball milling and underwater shock consolidation technique, Ceramics International 37 (2011) 1747-1754.

DOI: 10.1016/j.ceramint.2011.01.036

Google Scholar

[6] A. Kimura, H. Hasegawa, K. Yamada and T. Suzuki, Metastable Ti1-xAlxN films with different Al content, J. Mater. Sci. Lett. 19 (2000) 601-602.

Google Scholar

[7] S. PalDey, S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti, Al)N: a review, Mater Sci Engng A 342 (2003) 58-79.

DOI: 10.1016/s0921-5093(02)00259-9

Google Scholar

[8] Y. Ogino, M. Miki, T. Yamasaki and T. Inuma, Preparation of Ultrafine-Grained TiN and (Ti, Al)N Powders by Mechanical Alloying, Mater. Sci. Forum 88-90 (1992) 795-800.

DOI: 10.4028/www.scientific.net/msf.88-90.795

Google Scholar

[9] M. Miki, T. Yamasaki and Y. Ogino, Mechanical Alloying of Ti-Al Powder Mixtures under Nitrogen Atmosphere, Mater. Trans. JIM 34 (1993) 952-959.

DOI: 10.2320/matertrans1989.34.952

Google Scholar

[10] H. Borodianska, T. Ludvinskaya, Y. Sakka, I. Uvarova and O. Vasilkiv, Bulk Ti1-xAlxN Nanocomposite via Spark Plasma Sintering of Nanostructured Ti1-x AlxN-AlN powders, Scripta Materialia 61 (2009) 1020-1023.

DOI: 10.1016/j.scriptamat.2009.08.019

Google Scholar

[11] F. Neves, F.M. Braz Fernandes and I. Martins, Parametric optimization of Ti–Ni powder mixtures produced by mechanical alloying, J. Alloys. Compd. 509 (2011) 271-274.

DOI: 10.1016/j.jallcom.2010.11.036

Google Scholar

[12] B.N. Akhgar, M. Pazouki, M. Ranjbar, A. Hosseinnia and R. Salarian, Application of Taguchi method for optimization of synthetic rutile nano-powder preparation from ilmenite concentrate, Eng. Res. Des. Chem. 90 (2012) 220-228.

DOI: 10.1016/j.cherd.2011.07.008

Google Scholar

[13] K.S. Park, H.G. Kim, Y.H. Kim, C.H. Park and K.D. Kim, The preparation and characterization of NaWO3 particles for heat shielding by Taguchi optimization method, Chem. Eng. Res. Des. 89 (2011) 2389-2395.

DOI: 10.1016/j.cherd.2011.04.008

Google Scholar

[14] F.L. Zhang, M. Zhu and C.Y. Wang, Parameters optimization in the planetary ball milling of nanostructured tungsten carbide/cobalt powder, Int. J. Refract. Met. 26 (2008) 329-333.

DOI: 10.1016/j.ijrmhm.2007.08.005

Google Scholar

[15] A. Canakci, F. Erdemir, T. Varol and A. Patir, Determining the effect of process parameters on particle size in mechanical milling using the Taguchi method: Measurement and analysis, Measurment 46 (2013) 3532-3540.

DOI: 10.1016/j.measurement.2013.06.035

Google Scholar

[16] K. D Kim, S.H. Kim and H. T Kim, Applying the Taguchi method to the optimization for the synthesis of TiO2 nanoparticles by hydrolysis of TEOT in micelles, Colloids Surf. A Vol. 245 (2005) 99-105.

DOI: 10.1016/j.colsurfa.2004.11.033

Google Scholar

[17] S. Singh, H.S. Shan and P. Kumar, Parametric Optimization of Magnetic-Field-Assisted Abrasive Flow Machining by the Taguchi Method, Qual. Reliab. Eng. Int. 18 (2002) 273-283.

DOI: 10.1002/qre.470

Google Scholar

[18] P.J. Ross, Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design, second ed., NY: McGraw-Hill Mcgraw-Hill, New York, (1996).

Google Scholar

[19] S. Alamolhoda, S. Heshmati-Manesh and A. Ataie, Role of intensive milling in mechano-thermal processing of TiAl/Al2O3 nanocomposite, Adv. Powder Technol. 23 (2012) 343-348.

DOI: 10.1016/j.apt.2011.04.014

Google Scholar

[20] O. Keles, An optimization study on the cementation of silver with copper in nitrate solutions by Taguchi design. Hydrometallurgy 95 (2009) 333-336.

DOI: 10.1016/j.hydromet.2008.07.006

Google Scholar

[21] M. S. Phadke, Quality Engineering Using Robust Design, first ed., P T R Prentice Hall, New Jersey, (1989).

Google Scholar

[22] G. Taguchi, S. Chowdhury and Y. Wu, Taguchi's Quality Engineering Handbook, first ed., Wiley-Interscience, New York, (2005).

Google Scholar

[23] R.K. Roy, Design of Experiments Using the Taguchi Approach, Inc., New York, (2001).

Google Scholar

[24] H. Lindman, Analysis of variance in experimental design, Springer-Verlag, New York, (1992).

Google Scholar

[25] R. K. Roy, Primer on the Taguchi Method, Van Nostrand Reinhold, New York, (1990).

Google Scholar