Numerical Simulation of the Mechanical Behaviour of Single-Walled Carbon Nanotube Heterojunctions

Article Preview

Abstract:

The study of the mechanical behaviour of single-walled carbon nanotube heterojunctions has been carried out, implementing nanoscale continuum approach. A three-dimensional finite element model is used in order to evaluate the elastic behaviour of cone heterojunctions. It is shown that the bending rigidity of heterojunctions is sensitive to bending conditions. The torsional rigidity does not depend on torsion conditions. Both rigidities of the heterojunction are compared with those of the thinner and thicker constituent nanotubes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-87

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.C. Wei, Y.Q. Liu, The intramolecular junctions of carbon nanotubes, Advanced Mater. 20 (2008) 2815–2841.

DOI: 10.1002/adma.200800589

Google Scholar

[2] Q. Liu, W. Liu, Z.M. Cui, W.G. Song, L.J. Wan, Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods. Carbon 45 (2007) 268–273.

DOI: 10.1016/j.carbon.2006.09.029

Google Scholar

[3] F. Scarpa, J.W. Narojczyk, K.W. Wojciechowski, Unusual deformation mechanisms in carbon nanotube heterojunctions (5, 5) – (10, 10) under tensile loading, Phys. Stat. Solidi B 248 (2011) 82–87.

DOI: 10.1002/pssb.201083984

Google Scholar

[4] S.I. Yengejeh, M.A. Zadeh, A. Öchsner, On the buckling behavior of connected carbon nanotubes with parallel longitudinal axes, Appl. Phys. A 115 (2014) 1335–1344.

DOI: 10.1007/s00339-013-7999-2

Google Scholar

[5] Z. Kang, M. Li, Q. Tang, Buckling behavior of carbon nanotube-based intramolecular junctions under compression: Molecular dynamics simulation and finite element analysis, Comput. Mater. Sci. 50 (2010) 253–259.

DOI: 10.1016/j.commatsci.2010.08.011

Google Scholar

[6] W. -J. Lee, W. -S. Su, Investigation into the mechanical properties of single-walled carbon nanotube heterojunctions, Phys. Chem. Chem. Phys. 15 (2013) 11579–11585.

DOI: 10.1039/c3cp51340h

Google Scholar

[7] S.I. Yengejeh, M.A. Zadeh, A. Öchsner, Numerical Charaterization of the shear behavior of hetero-junction carbon nanotubes, J. Nano Res. 26 (2014) 143–151.

DOI: 10.4028/www.scientific.net/jnanor.26.143

Google Scholar

[8] Q. Lu, B. Bhattacharya , The role of atomistic simulations in probing the small scale aspects of fracture - a case study on a single-walled carbon nanotube, Eng. Fracture Mech. 72 (2005) 2037–(2071).

DOI: 10.1016/j.engfracmech.2005.01.009

Google Scholar

[9] A. Pantano, D.M. Parks, M.C. Boyce, Mechanics of deformation of single-and multi-wall carbon nanotubes, J. Mech. Phys. Solids 52 (2004) 789– 821.

DOI: 10.1016/j.jmps.2003.08.004

Google Scholar

[10] C. Li, T.W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct. 40 (2003) 2487–2499.

Google Scholar

[11] K.I. Tserpes, P. Papanikos, Finite Element modeling of single-walled carbon nanotubes, Compos. Part B–Eng. 36 (2005) 468–477.

DOI: 10.1016/j.compositesb.2004.10.003

Google Scholar

[12] M. Li, Z. Kang, R. Li, X. Meng, Y. Lu, A molecular dynamics study on tensile strength and failure modes of carbon nanotube junctions, J. Phys. D: Appl. Phys. 46 (2013) 495301.

DOI: 10.1088/0022-3727/46/49/495301

Google Scholar

[13] Z. Qin, Q. -H. Qin, X. -Q. Feng, Mechanical property of carbon nanotubes with intramolecular junctions: Molecular dynamics simulations, Phys. Lett. A 372 (2008) 6661–6666.

DOI: 10.1016/j.physleta.2008.09.010

Google Scholar

[14] A. Ghavamian, A. Andriyana, A.B. Chin, A. Öchsner, Numerical investigation on the influence of atomic defects on the tensile and torsional behavior of hetero-junction carbon nanotubes, Mater. Chem. Phys. 164 (2015) 122–137.

DOI: 10.1016/j.matchemphys.2015.08.033

Google Scholar

[15] S.I. Yengejeh, M.A. Zadeh, A. Öchsner, On the tensile behavior of hetero-junction carbon nanotubes, Compos. Part B–Eng. 75 (2015) 274–280.

DOI: 10.1016/j.compositesb.2015.02.001

Google Scholar

[16] M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes, Carbon 33 (1995) 883–891.

DOI: 10.1016/0008-6223(95)00017-8

Google Scholar

[17] S. Melchor, J.A. Dobado, CoNTub: an algorithm for connecting two arbitrary carbon nanotubes, J. Chem. Inf. Comp. Sci. 44 (2004) 1639–1646.

DOI: 10.1021/ci049857w

Google Scholar

[18] Y.G. Yao, Q.W. Li, J. Zhang, R. Liu, L.Y. Jiao, Y.T. Zhu, Z.F. Liu, Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions, Nat. Mater. 6 (2007) 283–286.

DOI: 10.1038/nmat1865

Google Scholar

[19] Z. Kang, M. Li, Q. Tang, Buckling behavior of carbon nanotube-based intramolecular junctions under compression: Molecular dynamics simulation and finite element analysis, Comput. Mater. Sci. 50 (2010) 253–259.

DOI: 10.1016/j.commatsci.2010.08.011

Google Scholar

[20] N.A. Sakharova, A.F.G. Pereira, J.M. Antunes, C.M.A. Brett, J.V. Fernandes, Mechanical characterization of single-walled carbon nanotubes: Numerical simulation study, Compos. Part B–Eng. 75 (2015) 73–85.

DOI: 10.1016/j.compositesb.2015.01.014

Google Scholar

[21] A.K. Rappe, C.J. Casemit, K.S. Colwell, W.A. Goddard, W.M. Skiff, UFF, a full periodic-table force-field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114 (1992) 10024–10035.

DOI: 10.1021/ja00051a040

Google Scholar

[22] B.R. Gelin, Molecular modelling of polymer structures and properties, Hanser/Gardner Publishers, Cincinnati (OH), (1994).

Google Scholar

[23] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, et al., A second generation force-field for the simulation of proteins, nucleic acids and organic molecules, J. Am. Chem. Soc. 117 (1995) 5179–5197.

DOI: 10.1021/ja00124a002

Google Scholar

[24] W.L. Jorgensen, D.L. Severance, Aromatic aromatic interactions—free energy profiles for the benzene dimer in water chloroform and liquid benzene, J. Am. Chem. Soc. 112 (1990) 4768–4764.

DOI: 10.1021/ja00168a022

Google Scholar