Numerical Simulation of the Mechanical Behaviour of Single-Walled Carbon Nanotube Heterojunctions

Abstract:

Article Preview

The study of the mechanical behaviour of single-walled carbon nanotube heterojunctions has been carried out, implementing nanoscale continuum approach. A three-dimensional finite element model is used in order to evaluate the elastic behaviour of cone heterojunctions. It is shown that the bending rigidity of heterojunctions is sensitive to bending conditions. The torsional rigidity does not depend on torsion conditions. Both rigidities of the heterojunction are compared with those of the thinner and thicker constituent nanotubes.

Info:

Periodical:

Edited by:

Prof. Andreas Öchsner, Prof. Irina V. Belova and Prof. Graeme E. Murch

Pages:

73-87

Citation:

N. A. Sakharova et al., "Numerical Simulation of the Mechanical Behaviour of Single-Walled Carbon Nanotube Heterojunctions", Journal of Nano Research, Vol. 38, pp. 73-87, 2016

Online since:

January 2016

Export:

Price:

$38.00

[1] D.C. Wei, Y.Q. Liu, The intramolecular junctions of carbon nanotubes, Advanced Mater. 20 (2008) 2815–2841.

[2] Q. Liu, W. Liu, Z.M. Cui, W.G. Song, L.J. Wan, Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods. Carbon 45 (2007) 268–273.

DOI: https://doi.org/10.1016/j.carbon.2006.09.029

[3] F. Scarpa, J.W. Narojczyk, K.W. Wojciechowski, Unusual deformation mechanisms in carbon nanotube heterojunctions (5, 5) – (10, 10) under tensile loading, Phys. Stat. Solidi B 248 (2011) 82–87.

DOI: https://doi.org/10.1002/pssb.201083984

[4] S.I. Yengejeh, M.A. Zadeh, A. Öchsner, On the buckling behavior of connected carbon nanotubes with parallel longitudinal axes, Appl. Phys. A 115 (2014) 1335–1344.

DOI: https://doi.org/10.1007/s00339-013-7999-2

[5] Z. Kang, M. Li, Q. Tang, Buckling behavior of carbon nanotube-based intramolecular junctions under compression: Molecular dynamics simulation and finite element analysis, Comput. Mater. Sci. 50 (2010) 253–259.

DOI: https://doi.org/10.1016/j.commatsci.2010.08.011

[6] W. -J. Lee, W. -S. Su, Investigation into the mechanical properties of single-walled carbon nanotube heterojunctions, Phys. Chem. Chem. Phys. 15 (2013) 11579–11585.

DOI: https://doi.org/10.1039/c3cp51340h

[7] S.I. Yengejeh, M.A. Zadeh, A. Öchsner, Numerical Charaterization of the shear behavior of hetero-junction carbon nanotubes, J. Nano Res. 26 (2014) 143–151.

DOI: https://doi.org/10.4028/www.scientific.net/jnanor.26.143

[8] Q. Lu, B. Bhattacharya , The role of atomistic simulations in probing the small scale aspects of fracture - a case study on a single-walled carbon nanotube, Eng. Fracture Mech. 72 (2005) 2037–(2071).

DOI: https://doi.org/10.1016/j.engfracmech.2005.01.009

[9] A. Pantano, D.M. Parks, M.C. Boyce, Mechanics of deformation of single-and multi-wall carbon nanotubes, J. Mech. Phys. Solids 52 (2004) 789– 821.

[10] C. Li, T.W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct. 40 (2003) 2487–2499.

[11] K.I. Tserpes, P. Papanikos, Finite Element modeling of single-walled carbon nanotubes, Compos. Part B–Eng. 36 (2005) 468–477.

DOI: https://doi.org/10.1016/j.compositesb.2004.10.003

[12] M. Li, Z. Kang, R. Li, X. Meng, Y. Lu, A molecular dynamics study on tensile strength and failure modes of carbon nanotube junctions, J. Phys. D: Appl. Phys. 46 (2013) 495301.

DOI: https://doi.org/10.1088/0022-3727/46/49/495301

[13] Z. Qin, Q. -H. Qin, X. -Q. Feng, Mechanical property of carbon nanotubes with intramolecular junctions: Molecular dynamics simulations, Phys. Lett. A 372 (2008) 6661–6666.

DOI: https://doi.org/10.1016/j.physleta.2008.09.010

[14] A. Ghavamian, A. Andriyana, A.B. Chin, A. Öchsner, Numerical investigation on the influence of atomic defects on the tensile and torsional behavior of hetero-junction carbon nanotubes, Mater. Chem. Phys. 164 (2015) 122–137.

DOI: https://doi.org/10.1016/j.matchemphys.2015.08.033

[15] S.I. Yengejeh, M.A. Zadeh, A. Öchsner, On the tensile behavior of hetero-junction carbon nanotubes, Compos. Part B–Eng. 75 (2015) 274–280.

DOI: https://doi.org/10.1016/j.compositesb.2015.02.001

[16] M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes, Carbon 33 (1995) 883–891.

DOI: https://doi.org/10.1016/0008-6223(95)00017-8

[17] S. Melchor, J.A. Dobado, CoNTub: an algorithm for connecting two arbitrary carbon nanotubes, J. Chem. Inf. Comp. Sci. 44 (2004) 1639–1646.

DOI: https://doi.org/10.1021/ci049857w

[18] Y.G. Yao, Q.W. Li, J. Zhang, R. Liu, L.Y. Jiao, Y.T. Zhu, Z.F. Liu, Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions, Nat. Mater. 6 (2007) 283–286.

DOI: https://doi.org/10.1038/nmat1865

[19] Z. Kang, M. Li, Q. Tang, Buckling behavior of carbon nanotube-based intramolecular junctions under compression: Molecular dynamics simulation and finite element analysis, Comput. Mater. Sci. 50 (2010) 253–259.

DOI: https://doi.org/10.1016/j.commatsci.2010.08.011

[20] N.A. Sakharova, A.F.G. Pereira, J.M. Antunes, C.M.A. Brett, J.V. Fernandes, Mechanical characterization of single-walled carbon nanotubes: Numerical simulation study, Compos. Part B–Eng. 75 (2015) 73–85.

DOI: https://doi.org/10.1016/j.compositesb.2015.01.014

[21] A.K. Rappe, C.J. Casemit, K.S. Colwell, W.A. Goddard, W.M. Skiff, UFF, a full periodic-table force-field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114 (1992) 10024–10035.

DOI: https://doi.org/10.1021/ja00051a040

[22] B.R. Gelin, Molecular modelling of polymer structures and properties, Hanser/Gardner Publishers, Cincinnati (OH), (1994).

[23] W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, et al., A second generation force-field for the simulation of proteins, nucleic acids and organic molecules, J. Am. Chem. Soc. 117 (1995) 5179–5197.

DOI: https://doi.org/10.1021/ja00124a002

[24] W.L. Jorgensen, D.L. Severance, Aromatic aromatic interactions—free energy profiles for the benzene dimer in water chloroform and liquid benzene, J. Am. Chem. Soc. 112 (1990) 4768–4764.

DOI: https://doi.org/10.1021/ja00168a022