[1]
D.C. Wei, Y.Q. Liu, The intramolecular junctions of carbon nanotubes, Advanced Mater. 20 (2008) 2815–2841.
DOI: 10.1002/adma.200800589
Google Scholar
[2]
Q. Liu, W. Liu, Z.M. Cui, W.G. Song, L.J. Wan, Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods. Carbon 45 (2007) 268–273.
DOI: 10.1016/j.carbon.2006.09.029
Google Scholar
[3]
F. Scarpa, J.W. Narojczyk, K.W. Wojciechowski, Unusual deformation mechanisms in carbon nanotube heterojunctions (5, 5) – (10, 10) under tensile loading, Phys. Stat. Solidi B 248 (2011) 82–87.
DOI: 10.1002/pssb.201083984
Google Scholar
[4]
S.I. Yengejeh, M.A. Zadeh, A. Öchsner, On the buckling behavior of connected carbon nanotubes with parallel longitudinal axes, Appl. Phys. A 115 (2014) 1335–1344.
DOI: 10.1007/s00339-013-7999-2
Google Scholar
[5]
Z. Kang, M. Li, Q. Tang, Buckling behavior of carbon nanotube-based intramolecular junctions under compression: Molecular dynamics simulation and finite element analysis, Comput. Mater. Sci. 50 (2010) 253–259.
DOI: 10.1016/j.commatsci.2010.08.011
Google Scholar
[6]
W. -J. Lee, W. -S. Su, Investigation into the mechanical properties of single-walled carbon nanotube heterojunctions, Phys. Chem. Chem. Phys. 15 (2013) 11579–11585.
DOI: 10.1039/c3cp51340h
Google Scholar
[7]
S.I. Yengejeh, M.A. Zadeh, A. Öchsner, Numerical Charaterization of the shear behavior of hetero-junction carbon nanotubes, J. Nano Res. 26 (2014) 143–151.
DOI: 10.4028/www.scientific.net/jnanor.26.143
Google Scholar
[8]
Q. Lu, B. Bhattacharya , The role of atomistic simulations in probing the small scale aspects of fracture - a case study on a single-walled carbon nanotube, Eng. Fracture Mech. 72 (2005) 2037–(2071).
DOI: 10.1016/j.engfracmech.2005.01.009
Google Scholar
[9]
A. Pantano, D.M. Parks, M.C. Boyce, Mechanics of deformation of single-and multi-wall carbon nanotubes, J. Mech. Phys. Solids 52 (2004) 789– 821.
DOI: 10.1016/j.jmps.2003.08.004
Google Scholar
[10]
C. Li, T.W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct. 40 (2003) 2487–2499.
Google Scholar
[11]
K.I. Tserpes, P. Papanikos, Finite Element modeling of single-walled carbon nanotubes, Compos. Part B–Eng. 36 (2005) 468–477.
DOI: 10.1016/j.compositesb.2004.10.003
Google Scholar
[12]
M. Li, Z. Kang, R. Li, X. Meng, Y. Lu, A molecular dynamics study on tensile strength and failure modes of carbon nanotube junctions, J. Phys. D: Appl. Phys. 46 (2013) 495301.
DOI: 10.1088/0022-3727/46/49/495301
Google Scholar
[13]
Z. Qin, Q. -H. Qin, X. -Q. Feng, Mechanical property of carbon nanotubes with intramolecular junctions: Molecular dynamics simulations, Phys. Lett. A 372 (2008) 6661–6666.
DOI: 10.1016/j.physleta.2008.09.010
Google Scholar
[14]
A. Ghavamian, A. Andriyana, A.B. Chin, A. Öchsner, Numerical investigation on the influence of atomic defects on the tensile and torsional behavior of hetero-junction carbon nanotubes, Mater. Chem. Phys. 164 (2015) 122–137.
DOI: 10.1016/j.matchemphys.2015.08.033
Google Scholar
[15]
S.I. Yengejeh, M.A. Zadeh, A. Öchsner, On the tensile behavior of hetero-junction carbon nanotubes, Compos. Part B–Eng. 75 (2015) 274–280.
DOI: 10.1016/j.compositesb.2015.02.001
Google Scholar
[16]
M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes, Carbon 33 (1995) 883–891.
DOI: 10.1016/0008-6223(95)00017-8
Google Scholar
[17]
S. Melchor, J.A. Dobado, CoNTub: an algorithm for connecting two arbitrary carbon nanotubes, J. Chem. Inf. Comp. Sci. 44 (2004) 1639–1646.
DOI: 10.1021/ci049857w
Google Scholar
[18]
Y.G. Yao, Q.W. Li, J. Zhang, R. Liu, L.Y. Jiao, Y.T. Zhu, Z.F. Liu, Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions, Nat. Mater. 6 (2007) 283–286.
DOI: 10.1038/nmat1865
Google Scholar
[19]
Z. Kang, M. Li, Q. Tang, Buckling behavior of carbon nanotube-based intramolecular junctions under compression: Molecular dynamics simulation and finite element analysis, Comput. Mater. Sci. 50 (2010) 253–259.
DOI: 10.1016/j.commatsci.2010.08.011
Google Scholar
[20]
N.A. Sakharova, A.F.G. Pereira, J.M. Antunes, C.M.A. Brett, J.V. Fernandes, Mechanical characterization of single-walled carbon nanotubes: Numerical simulation study, Compos. Part B–Eng. 75 (2015) 73–85.
DOI: 10.1016/j.compositesb.2015.01.014
Google Scholar
[21]
A.K. Rappe, C.J. Casemit, K.S. Colwell, W.A. Goddard, W.M. Skiff, UFF, a full periodic-table force-field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114 (1992) 10024–10035.
DOI: 10.1021/ja00051a040
Google Scholar
[22]
B.R. Gelin, Molecular modelling of polymer structures and properties, Hanser/Gardner Publishers, Cincinnati (OH), (1994).
Google Scholar
[23]
W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, D.M. Ferguson, et al., A second generation force-field for the simulation of proteins, nucleic acids and organic molecules, J. Am. Chem. Soc. 117 (1995) 5179–5197.
DOI: 10.1021/ja00124a002
Google Scholar
[24]
W.L. Jorgensen, D.L. Severance, Aromatic aromatic interactions—free energy profiles for the benzene dimer in water chloroform and liquid benzene, J. Am. Chem. Soc. 112 (1990) 4768–4764.
DOI: 10.1021/ja00168a022
Google Scholar