[1]
H.A. Son, K.Y. Yoon, G.J. Lee, J.W. Cho, S.K. Choi, J. W. Kim, …W.M. Sung, The potential applications in oil recovery with silica nanoparticle and polyvinyl alcohol stabilized emulsion. J. Petrol. Sci. Eng. 126 (2015) 152–161.
DOI: 10.1016/j.petrol.2014.11.001
Google Scholar
[2]
T. Zhang, D. Davidson, S. Bryant, and C. Huh, Nanoparticle-Stabilized Emulsions for Applications in Enhanced Oil Recovery, in Proceedings of SPE Improved Oil Recovery Symposium (2010).
DOI: 10.2118/129885-ms
Google Scholar
[3]
F. Qiu, The Potential Applications in Heavy Oil EOR With the Nanoparticle and Surfactant Stabilized Solvent-Based Emulsion, in The Canadian Unconventional Resources & International Petroleum Conference (2010) 1–12.
DOI: 10.2118/134613-ms
Google Scholar
[4]
S. Khosravani, M. Alaei, A. M. Rashidi, A. Ramazani, and M. Ershadi, O / W emulsions stabilized with g-alumina nanostructures for chemical enhanced oil recovery, Mater. Res. Bull. 48 (2013) 2186–2190.
DOI: 10.1016/j.materresbull.2013.02.054
Google Scholar
[5]
L. Hendraningrat, L. Shidong, and O. Torsæter, Glass Micromodel Experimental Study of Hydrophilic Nanoparticles Retention for EOR Project, The SPE Russian Oil & Gas Exploration & Production Technical Conference and Exhibition (2012).
DOI: 10.2118/159161-ru
Google Scholar
[6]
P. Nguyen, B. H. Do, D. Pham, D.Q. Pham Dao, H. Nguyen and B. D Nguyen, Evaluation on the EOR Potential Capacity of the Synthesized Composite Silica-Core/Polymer-Shell Nanoparticles Blended with Surfactant Systems for the HPHT Offshore Reservoir Conditions, The SPE International Oilfield Nanotechnology Conference (2012).
DOI: 10.2118/157127-ms
Google Scholar
[7]
H. Soleimani, N. Yahya, N.R. Ahmad Latiff, H.M. Zaid, and B. Demiral, Co-Precipitation Synthesis of Fe2+1-xCo2+xFe2O4 Nanoparticles : Structural Characterization and Magnetic Properties, J. Nano Res. 26 (2014) 111–116.
Google Scholar
[8]
J. L. Baez, M. P. Ruiz, J. Faria, J. H. Harwell, B. Shiau, and D. E. Resasco, Stabilization of Interfacially-Active-Nanohybrids / Polymer Suspensions and Transport through Porous Media, In The Eighteenth SPE Improved Oil Recovery Symposium (2012).
DOI: 10.2118/154052-ms
Google Scholar
[9]
M. V Bennetzen and K. Mogensen, Novel Applications of Nanoparticles for Future Enhanced Oil Recovery, International Petroleum Technology Conference (2014).
DOI: 10.2523/17857-ms
Google Scholar
[10]
F. S. D. A. Soares, M. Prodanovi, and C. Huh, Excitable Nanoparticles for Trapped Oil Mobilization, in the SPE Improved Oil Recovery Symposium (2014).
Google Scholar
[11]
S. Ryoo, A. R. Rahmani, K. Y. Yoon, M. Prodanović, C. Kotsmar, T. E. Milner, K. P. Johnston, S. L. Bryant, and C. Huh, Theoretical and experimental investigation of the motion of multiphase fluids containing paramagnetic nanoparticles in porous media, J. Pet. Sci. Eng. 81 (2012).
DOI: 10.1016/j.petrol.2011.11.008
Google Scholar
[12]
P. L. J. Zitha, U.S. Patent 7032670 B2. (2006).
Google Scholar
[13]
P. L. J. Zitha and F. Wessel, Fluid Flow Control Using Magnetorheological Fluids, Proc. SPE/DOE Improv. Oil Recover. Symp. (2002) 1–10.
Google Scholar
[14]
P. Vaqueiro, M.P. Crosnier-Lopez, and M.A. López-Quintela, Synthesis and Characterization of Yttrium Iron Garnet Nanoparticles, " J. Solid State Chem. 126 (1996) 161–168.
DOI: 10.1006/jssc.1996.0324
Google Scholar
[15]
H. M. Zaid, N. Yahya and N.R. Ahmad Latiff, The Effect of Nanoparticles Crystallite Size on the Recovery Efficiency in Dielectric Nanofluid Flooding, J. Nano Res. 21 (2013) 103–108.
DOI: 10.4028/www.scientific.net/jnanor.21.103
Google Scholar
[16]
H. Soleimani, N.R. Ahmad Latiff, N. Yahya, H. M Zaid, M. Sabet, B. H. Guan and L.K. Chuan, Effect of Annealing Temperature on the Crystallization of Hematite- Alumina (Fe2O3-Al2O3) Nanocomposite and Its Influence in EOR Application, J. Nano Res. 29 (2014).
DOI: 10.4028/www.scientific.net/jnanor.29.105
Google Scholar
[17]
M. Ristić, I. Nowik, S. Popović, I. Felner, and S. Musić, Influence of synthesis procedure on the YIG formation, Mater. Lett. 57 (2003) 2584–2590.
DOI: 10.1016/s0167-577x(02)01315-0
Google Scholar
[18]
O. M. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani, and M. Bououdina, Sol – gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties, Superlattice Micros 52 (2012) 793–799.
DOI: 10.1016/j.spmi.2012.07.009
Google Scholar
[19]
B. H. Guan, H. Soleimani, N. Yahya, and N. R. A. Latiff, Phase Evolution and Crystallite Size of Ni0. 25Zn0. 75Fe2O4 at Different Calcination Temperatures, Adv. Mater. Res. 925 (2014) 290–294.
DOI: 10.4028/www.scientific.net/amr.925.290
Google Scholar
[20]
R. D. Sánchez, J. Rivas, P. Vaqueiro, M. a. López-Quintela, and D. Caeiro, Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol–gel method, J. Magn. Magn. Mater. 247 (2002) 92–98.
DOI: 10.1016/s0304-8853(02)00170-1
Google Scholar
[21]
P. Vaqueiro, M.A. López-Quintela, J. Rivas, and J. M. Greneche, Annealing dependence of magnetic properties in nanostructured particles of yttrium iron garnet prepared by citrate gel process, J. Magn. Magn. Mater. 169 (1997) 56–68.
DOI: 10.1016/s0304-8853(96)00728-7
Google Scholar
[22]
M. Zheng, X. C. Wu, B. S. Zou, and Y. J. Wang, Magnetic properties of nanosized MnFe O particles, 183 (1998) 152–156.
Google Scholar
[23]
N. Yahya, M. Kashif, A. Shafie, H. Solemani, and H. M. Zaid, Improved Oil Recovery by High Magnetic Flux Density Subjected to Iron Oxide Nanofluids, J. Nano Res. 26 (2014) 89–99.
DOI: 10.4028/www.scientific.net/jnanor.26.89
Google Scholar
[24]
H. M. Zaid, N. Rasyada A. Latiff, N. Yahya, H. Soleimani, A. Shafie, Application of Electromagnetic Waves and Dielectric Nanoparticles in Enhanced Oil Recovery, J. Nano Res. 26 (2014) 135-142.
DOI: 10.4028/www.scientific.net/jnanor.26.135
Google Scholar
[25]
A. Zeinijahromi and P. Bedrikovetsky, Physics Mechanisms of Enhanced Recovery By Fines-migration-assisted Waterflooding (Laboratory Study), " in The SPE European Formation Damage Conference and Exhibition (2013).
DOI: 10.2118/165190-ms
Google Scholar