[1]
K.M. F Shahil, A. A Balandin, Thermal properties of graphene and multilayer graphene: Applications in thermal interface Materials. Solid State Commun. 152 (2012) 1331-40.
DOI: 10.1016/j.ssc.2012.04.034
Google Scholar
[2]
R. J McGlen, R Jachuck, S Lin, Integrated thermal management techniques for high power electronic devices. Appl Therm Eng. 24 (2004) 1143-56.
DOI: 10.1016/j.applthermaleng.2003.12.029
Google Scholar
[3]
A. J McNamara, Y Joshi, Z. M Zhang, Characterization of nanostructured thermal interface materials – A review. Int. J. Therm. Sci 62 (2012) 2–11.
Google Scholar
[4]
J. Due, A. J Robinson. Reliability of thermal interface materials: A review. Appl. Therm. Eng (2013) 50455–463.
Google Scholar
[5]
R.J. Warzoha, D. Zhang, G. Feng et al. Engineering interfaces in carbon nanostructured mats for the creation of energy efficient thermal interface materials. Carbon. 61 (2013) 441-457.
DOI: 10.1016/j.carbon.2013.05.028
Google Scholar
[6]
S. Sihn, S. Ganguli, A. K Roy et al. Enhancement of through-thickness themal conductivity in adhesively bonded joints using aligned carbon nanotubes. Compos Sci Technol. 68 (2008) 658-665.
DOI: 10.1016/j.compscitech.2007.09.016
Google Scholar
[7]
K. Stephan, A. Laesecke. The thermal conductivity of fluid air. J Phys Chem Ref Data. 14 (1985) 227-234.
Google Scholar
[8]
S. Ghosh, I. Calizo, D. Teweldebrhan et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. App Phys Lett. 92 (2008) 15911.
DOI: 10.1063/1.2907977
Google Scholar
[9]
A.A. Balandin, S. Ghosh, W. Bao et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8 (2008) 902-907.
DOI: 10.1021/nl0731872
Google Scholar
[10]
A.A. Balandin. Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10 (2011) 569–581.
Google Scholar
[11]
D.L. Nika, S. Ghosh, E. P Pokatilov et al. Lattice conductivity of graphene flakes: Comparison with bulk graphite. App Phys Lett. 94 (2009) 203103.
DOI: 10.1063/1.3136860
Google Scholar
[12]
A. Yu, P. Ramesh, M.E. Itkis et al. Graphite nanoplatelet-epoxy composite thermal interface materials, J Phys Chem C. 111 (2007) 7565-9.
DOI: 10.1021/jp071761s
Google Scholar
[13]
C. Min, D. Yu, J. Cao et al. A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity, Carbon. 55 (2013) 116-125.
DOI: 10.1016/j.carbon.2012.12.017
Google Scholar
[14]
I. Balberg, N. Binenbaum. Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks, Phys Rev B, 28 (1983) 3799.
DOI: 10.1103/physrevb.28.3799
Google Scholar
[15]
F. Du, J.E. Fischer, K.I. Winey. Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites, Phys Rev B. 72 (2005) 121404.
DOI: 10.1103/physrevb.72.121404
Google Scholar
[16]
I. Zaman, S. Araby, A. Khalid, B. Manshoor. Moisture absorption and diffusivity of epoxy filled layered nanocomposite, Adv Environ Bio. 8 (2014) : 2626-31.
Google Scholar
[17]
J.P. Gwinn, R. L Webb. Performance and testing of thermal interface materials, Microelectr J 34 (2003) 215-222.
Google Scholar