GNPs Reinforced Epoxy Nanocomposites Used as Thermal Interface Materials

Article Preview

Abstract:

The current tendency in electronics is the reduction of size while continuously increasing the power consumption due to new functionalities and applications. Both aspects generate a heat increment. Consequently, dissipating the heat to the environment is necessary in order to avoid component overheating. [1,2]. The most efficient way to achieve it is to allow the heat to flow from the hot component to a heat sink. In order to improve the efficiency of this process, thermal resistance between both components must be reduced which is usually done by using a thermal interface material (TIM) between both surfaces [3-5]. This material should fill the gaps created due to the microscopic roughness of both surfaces and it must have good thermal conductivity [6]. These air filled gaps result in a very high contact resistance between joined parts, as the air thermal conductivity is very low [7].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-25

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.M. F Shahil, A. A Balandin, Thermal properties of graphene and multilayer graphene: Applications in thermal interface Materials. Solid State Commun. 152 (2012) 1331-40.

DOI: 10.1016/j.ssc.2012.04.034

Google Scholar

[2] R. J McGlen, R Jachuck, S Lin, Integrated thermal management techniques for high power electronic devices. Appl Therm Eng. 24 (2004) 1143-56.

DOI: 10.1016/j.applthermaleng.2003.12.029

Google Scholar

[3] A. J McNamara, Y Joshi, Z. M Zhang, Characterization of nanostructured thermal interface materials – A review. Int. J. Therm. Sci 62 (2012) 2–11.

Google Scholar

[4] J. Due, A. J Robinson. Reliability of thermal interface materials: A review. Appl. Therm. Eng (2013) 50455–463.

Google Scholar

[5] R.J. Warzoha, D. Zhang, G. Feng et al. Engineering interfaces in carbon nanostructured mats for the creation of energy efficient thermal interface materials. Carbon. 61 (2013) 441-457.

DOI: 10.1016/j.carbon.2013.05.028

Google Scholar

[6] S. Sihn, S. Ganguli, A. K Roy et al. Enhancement of through-thickness themal conductivity in adhesively bonded joints using aligned carbon nanotubes. Compos Sci Technol. 68 (2008) 658-665.

DOI: 10.1016/j.compscitech.2007.09.016

Google Scholar

[7] K. Stephan, A. Laesecke. The thermal conductivity of fluid air. J Phys Chem Ref Data. 14 (1985) 227-234.

Google Scholar

[8] S. Ghosh, I. Calizo, D. Teweldebrhan et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. App Phys Lett. 92 (2008) 15911.

DOI: 10.1063/1.2907977

Google Scholar

[9] A.A. Balandin, S. Ghosh, W. Bao et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8 (2008) 902-907.

DOI: 10.1021/nl0731872

Google Scholar

[10] A.A. Balandin. Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10 (2011) 569–581.

Google Scholar

[11] D.L. Nika, S. Ghosh, E. P Pokatilov et al. Lattice conductivity of graphene flakes: Comparison with bulk graphite. App Phys Lett. 94 (2009) 203103.

DOI: 10.1063/1.3136860

Google Scholar

[12] A. Yu, P. Ramesh, M.E. Itkis et al. Graphite nanoplatelet-epoxy composite thermal interface materials, J Phys Chem C. 111 (2007) 7565-9.

DOI: 10.1021/jp071761s

Google Scholar

[13] C. Min, D. Yu, J. Cao et al. A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity, Carbon. 55 (2013) 116-125.

DOI: 10.1016/j.carbon.2012.12.017

Google Scholar

[14] I. Balberg, N. Binenbaum. Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks, Phys Rev B, 28 (1983) 3799.

DOI: 10.1103/physrevb.28.3799

Google Scholar

[15] F. Du, J.E. Fischer, K.I. Winey. Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites, Phys Rev B. 72 (2005) 121404.

DOI: 10.1103/physrevb.72.121404

Google Scholar

[16] I. Zaman, S. Araby, A. Khalid, B. Manshoor. Moisture absorption and diffusivity of epoxy filled layered nanocomposite, Adv Environ Bio. 8 (2014) : 2626-31.

Google Scholar

[17] J.P. Gwinn, R. L Webb. Performance and testing of thermal interface materials, Microelectr J 34 (2003) 215-222.

Google Scholar