[1]
H. Çalışkan, Selection of boron based tribological hard coatings using multi-criteria decision making methods, Materials & Design, 50 (2013) 742-749.
DOI: 10.1016/j.matdes.2013.03.059
Google Scholar
[2]
D. Hee Kwon, M. Chang Kang, J. Suk Kim, J. Tae Ok, K. Ho Kim, A comparative study on cutting performance of TiN-coated tungsten carbide cutting tool with a cobalt interlayer, Surface and Coatings Technology, 200 (2005) 1933-(1938).
DOI: 10.1016/j.surfcoat.2005.08.121
Google Scholar
[3]
M.A. Lajis, A.N.M. Karim, A.K.M.N. Amin, A.M.K. Hafiz, L.G. Turnad, Prediction of tool life in end milling of hardened steel AISI D2, European Journal of Scientific Research, 21 (2008) 592-602.
DOI: 10.4028/www.scientific.net/amr.83-86.56
Google Scholar
[4]
N.H. Rafai, L.M. Amri, N.A.J. Hosni, Investigation of tool wear, tool life and surface roughness when machining AISI D2 hardened steel using PVD TiAlN coated carbide tools, Applied Mechanics and Materials, 465 - 466 (2013) 1098-1102.
DOI: 10.4028/www.scientific.net/amm.465-466.1098
Google Scholar
[5]
Y.G. Jeong, M.C. Kang, J.S. Kim, K.H. Kim, W.G. Kim, I.D. Park, Y.H. Jun, Mechanical behavior and cutting performance of nano-multi-layer TixAl1-xN coated tools for high-speed machining of AISI D2 die steel, Current Applied Physics, 9 (2009).
DOI: 10.1016/j.cap.2009.02.021
Google Scholar
[6]
P. Koshy, R.C. Dewes, D.K. Aspinwall, High speed end milling of hardened AISI D2 tool steel (~58 HRC), Journal of Materials Processing Technology, 127 (2002) 266-273.
DOI: 10.1016/s0924-0136(02)00155-3
Google Scholar
[7]
H. Çalışkan, C. Kurbanoğlu, P. Panjan, M. Čekada, D. Kramar, Wear behavior and cutting performance of nanostructured hard coatings on cemented carbide cutting tools in hard milling, Tribology International, 62 (2013) 215-222.
DOI: 10.1016/j.triboint.2013.02.035
Google Scholar
[8]
S. Imamura, H. Fukui, A. Shibata, N. Omori, M. Setoyama, Properties and cutting performance of AlTiCrN/TiSiCN bilayer coatings deposited by cathodic-arc ion plating, Surface and Coatings Technology, 202 (2007) 820-825.
DOI: 10.1016/j.surfcoat.2007.05.087
Google Scholar
[9]
Y.K. Jeong, M.C. Kang, S.H. Kwon, K.H. Kim, H.G. Kim, J.S. Kim, Tool life of nanocomposite Ti-Al-Si-N coated end-mill by hybrid coating system in high speed machining of hardened AISI D2 steel, Current Applied Physics, 9 (2009) S141-S144.
DOI: 10.1016/j.cap.2008.08.053
Google Scholar
[10]
S. PalDey, S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti, Al)N: a review, Materials Science and Engineering: A, 342 (2003) 58-79.
DOI: 10.1016/s0921-5093(02)00259-9
Google Scholar
[11]
P.C. Jindal, A.T. Santhanam, U. Schleinkofer, A.F. Shuster, Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning, International Journal of Refractory Metals and Hard Materials, 17 (1999) 163-170.
DOI: 10.1016/s0263-4368(99)00008-6
Google Scholar
[12]
A. Miletić, P. Panjan, B. Škorić, M. Čekada, G. Dražič, J. Kovač, Microstructure and mechanical properties of nanostructured Ti–Al–Si–N coatings deposited by magnetron sputtering, Surface and Coatings Technology, 241 (2014) 105-111.
DOI: 10.1016/j.surfcoat.2013.10.050
Google Scholar
[13]
M. Diserens, J. Patscheider, F. Lévy, Improving the properties of titanium nitride by incorporation of silicon, Surface and Coatings Technology, 108–109 (1998) 241-246.
DOI: 10.1016/s0257-8972(98)00560-x
Google Scholar
[14]
H.C. Barshilia, B. Deepthi, A.S. Arun Prabhu, K.S. Rajam, Superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive direct current unbalanced magnetron sputtering, Surface and Coatings Technology, 201 (2006) 329-337.
DOI: 10.1016/j.surfcoat.2005.11.124
Google Scholar
[15]
F.W. Taylor, On the art of cutting metals, The American Society of Mechanical Engineers, New York, (1907).
Google Scholar
[16]
Y. Altıntaş, Manufacturing Automation, Cambridge University Press, Vancouver, (2000).
Google Scholar